UniAda: Domain Unifying and Adapting Network for Generalizable Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像(数学) 医学影像学 分割 领域(数学分析) 尺度空间分割 图像处理 模式识别(心理学) 数学 数学分析
作者
Yi Zhang,Yingyu Chen,Hui Yu,Zhiwen Wang,Shanshan Wang,Fenglei Fan,Hongming Shan,Yi Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3523319
摘要

Learning a generalizable medical image segmentation model is an important but challenging task since the unseen (testing) domains may have significant discrepancies from seen (training) domains due to different vendors and scanning protocols. Existing segmentation methods, typically built upon domain generalization (DG), aim to learn multi-source domain-invariant features through data or feature augmentation techniques, but the resulting models either fail to characterize global domains during training or cannot sense unseen domain information during testing. To tackle these challenges, we propose a domain Unifying and Adapting network (UniAda) for generalizable medical image segmentation, a novel "unifying while training, adapting while testing" paradigm that can learn a domain-aware base model during training and dynamically adapt it to unseen target domains during testing. First, we propose to unify the multi-source domains into a global inter-source domain via a novel feature statistics update mechanism, which can sample new features for the unseen domains, facilitating the training of a domain base model. Second, we leverage the uncertainty map to guide the adaptation of the trained model for each testing sample, considering the specific target domain may be outside the global inter-source domain. Extensive experimental results on two public cross-domain medical datasets and one inhouse cross-domain dataset demonstrate the strong generalization capacity of the proposed UniAda over state-of-the-art DG methods. The source code of our UniAda is available at https://github.com/ZhouZhang233/UniAda.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助咸鱼想翻身采纳,获得10
1秒前
小蘑菇应助上好佳采纳,获得10
2秒前
大奎发布了新的文献求助10
2秒前
zzx完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助150
3秒前
橙子发布了新的文献求助10
4秒前
张虹完成签到,获得积分10
4秒前
华仔应助感动归尘采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
乌云乌云快走开完成签到,获得积分10
5秒前
负责雨安完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
起名废人发布了新的文献求助10
6秒前
7秒前
8秒前
whb发布了新的文献求助10
8秒前
WangJ1018完成签到,获得积分10
8秒前
zzz发布了新的文献求助10
8秒前
斯文败类应助怡然万声采纳,获得10
9秒前
初见完成签到,获得积分10
9秒前
野猪大王完成签到 ,获得积分10
9秒前
10秒前
搜集达人应助嘟啦采纳,获得10
10秒前
zxcvbnm发布了新的文献求助10
11秒前
甜甜灯泡发布了新的文献求助10
11秒前
11秒前
星辰大海应助木之夏采纳,获得10
11秒前
kk发布了新的文献求助10
13秒前
西又木完成签到,获得积分10
13秒前
13秒前
13秒前
宁幼萱发布了新的文献求助10
14秒前
abc1122完成签到,获得积分10
14秒前
xun完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075278
求助须知:如何正确求助?哪些是违规求助? 4295158
关于积分的说明 13383568
捐赠科研通 4116817
什么是DOI,文献DOI怎么找? 2254505
邀请新用户注册赠送积分活动 1259126
关于科研通互助平台的介绍 1191907