已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of liver cancer prognosis based on immune cell marker genes

免疫系统 基因 肝癌 癌症 癌症研究 医学 生物 计算生物学 肿瘤科 免疫学 内科学 遗传学
作者
Jianfei Liu,Junjie Qu,Lingling Xu,Qiao Chen,Guiwen Shao,Xin Liu,Hui He,Jian Zhang
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:14: 1147797-1147797 被引量:6
标识
DOI:10.3389/fimmu.2023.1147797
摘要

Introduction Monitoring the response after treatment of liver cancer and timely adjusting the treatment strategy are crucial to improve the survival rate of liver cancer. At present, the clinical monitoring of liver cancer after treatment is mainly based on serum markers and imaging. Morphological evaluation has limitations, such as the inability to measure small tumors and the poor repeatability of measurement, which is not applicable to cancer evaluation after immunotherapy or targeted treatment. The determination of serum markers is greatly affected by the environment and cannot accurately evaluate the prognosis. With the development of single cell sequencing technology, a large number of immune cell-specific genes have been identified. Immune cells and microenvironment play an important role in the process of prognosis. We speculate that the expression changes of immune cell-specific genes can indicate the process of prognosis. Method Therefore, this paper first screened out the immune cell-specific genes related to liver cancer, and then built a deep learning model based on the expression of these genes to predict metastasis and the survival time of liver cancer patients. We verified and compared the model on the data set of 372 patients with liver cancer. Result The experiments found that our model is significantly superior to other methods, and can accurately identify whether liver cancer patients have metastasis and predict the survival time of liver cancer patients according to the expression of immune cell-specific genes. Discussion We found these immune cell-specific genes participant multiple cancer-related pathways. We fully explored the function of these genes, which would support the development of immunotherapy for liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
2秒前
5秒前
nono发布了新的文献求助10
5秒前
8秒前
abab完成签到 ,获得积分10
9秒前
WILD完成签到 ,获得积分10
9秒前
GingerF应助阳地黄采纳,获得200
9秒前
维奈克拉应助gndd采纳,获得10
9秒前
orixero应助roetfff采纳,获得10
10秒前
12秒前
Bill Wang发布了新的文献求助10
12秒前
athena完成签到 ,获得积分10
12秒前
13秒前
15秒前
HTniconico完成签到 ,获得积分10
15秒前
15秒前
七七发布了新的文献求助10
16秒前
Lorain完成签到,获得积分10
17秒前
20秒前
欣喜觅山完成签到 ,获得积分10
20秒前
zkx发布了新的文献求助20
20秒前
赘婿应助合适夜柳采纳,获得10
22秒前
eu发布了新的文献求助10
23秒前
黛薇完成签到,获得积分10
25秒前
flower关注了科研通微信公众号
25秒前
花生完成签到 ,获得积分10
26秒前
无限的猫猫关注了科研通微信公众号
27秒前
典雅的俊驰应助jiao采纳,获得10
27秒前
29秒前
搜集达人应助七七采纳,获得10
29秒前
Evan完成签到 ,获得积分10
32秒前
西予完成签到,获得积分10
34秒前
34秒前
Fairy发布了新的文献求助10
35秒前
37秒前
Robin完成签到,获得积分10
39秒前
39秒前
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493188
求助须知:如何正确求助?哪些是违规求助? 4591220
关于积分的说明 14433506
捐赠科研通 4523842
什么是DOI,文献DOI怎么找? 2478488
邀请新用户注册赠送积分活动 1463484
关于科研通互助平台的介绍 1436266