Progress, achievements, and challenges in multimodal sentiment analysis using deep learning: A survey

情绪分析 计算机科学 深度学习 人工智能 数据科学 机器学习
作者
Ananya Pandey,Dinesh Kumar Vishwakarma
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111206-111206 被引量:29
标识
DOI:10.1016/j.asoc.2023.111206
摘要

Sentiment analysis is a computational technique that analyses the subjective information conveyed within a given expression. This encompasses appraisals, opinions, attitudes or emotions towards a particular subject, individual, or entity. Conventional sentiment analysis solely considers the text modality and derives sentiment by identifying the semantic relationship between words within a sentence. Despite this, certain expressions, such as exaggeration, sarcasm and humor, pose a challenge for automated detection when conveyed only through text. Multimodal sentiment analysis incorporates various forms of data, such as visual and acoustic cues, in addition to text. By utilizing fusion analysis, this approach can more precisely determine the implied sentiment polarity, which includes positive, neutral, and negative sentiments. Thus, the recent advancements in deep learning have boosted the domain of multimodal sentiment analysis to new heights. The research community has also shown significant interest in this topic due to its potential for both practical application and educational research. In light of this fact, this paper aims to present a thorough analysis of recent ground-breaking research studies conducted in multimodal sentiment analysis, which employs deep learning models across various modalities such as text, audio, image, and video. Furthermore, the article dives into a discussion of the multiple categories of multimodal data, diverse domains in which multimodal sentiment analysis can be applied, a range of operations that are integral to multimodal sentiment analysis, deep learning architectures, a variety of fusion methods, challenges associated with multimodal sentiment analysis, and the benchmark datasets in addition to the state-of-the-art approaches. The ultimate goal of this survey is to indicate the success of deep learning architectures in tackling the complexities associated with multimodal sentiment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
流沙无言完成签到 ,获得积分10
1秒前
HAHA发布了新的文献求助10
1秒前
浮生完成签到 ,获得积分10
3秒前
小卷粉完成签到 ,获得积分10
3秒前
4秒前
4秒前
乐乐应助牛马采纳,获得10
4秒前
顾北完成签到,获得积分10
4秒前
饱满秋白发布了新的文献求助10
4秒前
三金发布了新的文献求助30
5秒前
鹿茸发布了新的文献求助10
5秒前
souther完成签到,获得积分0
5秒前
月亮不营业完成签到 ,获得积分10
5秒前
ZHAYUE发布了新的文献求助10
8秒前
8秒前
我的miemie应助GLORIA采纳,获得20
8秒前
Sonder完成签到 ,获得积分10
8秒前
朱光辉完成签到,获得积分10
10秒前
欧尼酱完成签到,获得积分20
10秒前
vlots应助dy1994采纳,获得30
10秒前
踏实口红发布了新的文献求助10
11秒前
MOREMO发布了新的文献求助10
12秒前
13秒前
情怀应助爱笑的呵呵先生采纳,获得10
14秒前
豆豆完成签到 ,获得积分10
14秒前
zoi99发布了新的文献求助10
15秒前
丘比特应助焚天尘殇采纳,获得10
15秒前
16秒前
踏实口红完成签到,获得积分10
16秒前
17秒前
ying发布了新的文献求助10
20秒前
ddup完成签到,获得积分10
21秒前
22秒前
EricXu发布了新的文献求助10
23秒前
24秒前
cz完成签到,获得积分10
24秒前
yuliuism完成签到,获得积分10
25秒前
Kiki发布了新的文献求助10
25秒前
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210