已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Progress, achievements, and challenges in multimodal sentiment analysis using deep learning: A survey

情绪分析 计算机科学 深度学习 人工智能 数据科学 机器学习
作者
Ananya Pandey,Dinesh Kumar Vishwakarma
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111206-111206 被引量:12
标识
DOI:10.1016/j.asoc.2023.111206
摘要

Sentiment analysis is a computational technique that analyses the subjective information conveyed within a given expression. This encompasses appraisals, opinions, attitudes or emotions towards a particular subject, individual, or entity. Conventional sentiment analysis solely considers the text modality and derives sentiment by identifying the semantic relationship between words within a sentence. Despite this, certain expressions, such as exaggeration, sarcasm and humor, pose a challenge for automated detection when conveyed only through text. Multimodal sentiment analysis incorporates various forms of data, such as visual and acoustic cues, in addition to text. By utilizing fusion analysis, this approach can more precisely determine the implied sentiment polarity, which includes positive, neutral, and negative sentiments. Thus, the recent advancements in deep learning have boosted the domain of multimodal sentiment analysis to new heights. The research community has also shown significant interest in this topic due to its potential for both practical application and educational research. In light of this fact, this paper aims to present a thorough analysis of recent ground-breaking research studies conducted in multimodal sentiment analysis, which employs deep learning models across various modalities such as text, audio, image, and video. Furthermore, the article dives into a discussion of the multiple categories of multimodal data, diverse domains in which multimodal sentiment analysis can be applied, a range of operations that are integral to multimodal sentiment analysis, deep learning architectures, a variety of fusion methods, challenges associated with multimodal sentiment analysis, and the benchmark datasets in addition to the state-of-the-art approaches. The ultimate goal of this survey is to indicate the success of deep learning architectures in tackling the complexities associated with multimodal sentiment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵香发布了新的文献求助10
1秒前
1秒前
snowpie发布了新的文献求助10
1秒前
5秒前
韦一手完成签到,获得积分10
5秒前
zbz完成签到,获得积分10
5秒前
爱吃年糕的朱完成签到 ,获得积分10
6秒前
7秒前
朴实子骞完成签到 ,获得积分10
8秒前
英俊的小蝴蝶完成签到,获得积分10
8秒前
我是老大应助meng采纳,获得10
9秒前
传奇3应助Jerry20184采纳,获得10
10秒前
10秒前
WSQ2130应助和谐的绮南采纳,获得10
10秒前
11秒前
完美世界应助高贵香采纳,获得10
13秒前
14秒前
扁舟灬发布了新的文献求助10
14秒前
16秒前
adamchris发布了新的文献求助100
18秒前
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
刘慧鑫应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
刘慧鑫应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
19秒前
20秒前
地表飞猪应助紫麒麟采纳,获得10
21秒前
FashionBoy应助俊逸的代曼采纳,获得10
21秒前
FashionBoy应助guan采纳,获得10
21秒前
喜悦兔子完成签到 ,获得积分10
23秒前
acihk完成签到,获得积分20
23秒前
23秒前
CipherSage应助爱吃年糕的朱采纳,获得30
24秒前
24秒前
meng发布了新的文献求助10
24秒前
完美世界应助扁舟灬采纳,获得10
25秒前
大模型应助mufcyang采纳,获得10
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
幼儿游戏与指导(第二版) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833527
求助须知:如何正确求助?哪些是违规求助? 3376006
关于积分的说明 10491403
捐赠科研通 3095552
什么是DOI,文献DOI怎么找? 1704447
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771740