Synergistic Integration of Machine Learning with Microstructure/Composition-Designed SnO2 and WO3 Breath Sensors

卷积神经网络 人工神经网络 计算机科学 人工智能 传感器阵列 深度学习 无线传感器网络 机器学习 材料科学 计算机网络
作者
Yoonmi Nam,Ki-Beom Kim,Sang Hun Kim,Kihong Park,Myeong-Ill Lee,Jeong Won Cho,Jongtae Lim,Insung Hwang,Yun Chan Kang,Jin‐Ha Hwang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (1): 182-194 被引量:19
标识
DOI:10.1021/acssensors.3c01814
摘要

A high-performance semiconductor metal oxide gas sensing strategy is proposed for efficient sensor-based disease prediction by integrating a machine learning methodology with complementary sensor arrays composed of SnO2- and WO3-based sensors. The six sensors, including SnO2- and WO3-based sensors and neural network algorithms, were used to measure gas mixtures. The six constituent sensors were subjected to acetone and hydrogen environments to monitor the effect of diet and/or irritable bowel syndrome (IBS) under the interference of ethanol. The SnO2- and WO3-based sensors suffer from poor discrimination ability if sensors (a single sensor or multiple sensors) within the same group (SnO2- or WO3-based) are separately applied, even when deep learning is applied to enhance the sensing operation. However, hybrid integration is proven to be effective in discerning acetone from hydrogen even in a two-sensor configuration through the synergistic contribution of supervised learning, i.e., neural network approaches involving deep neural networks (DNNs) and convolutional neural networks (CNNs). DNN-based numeric data and CNN-based image data can be exploited for discriminating acetone and hydrogen, with the aim of predicting the status of an exercise-driven diet and IBS. The ramifications of the proposed hybrid sensor combinations and machine learning for the high-performance breath sensor domain are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助F_echo采纳,获得30
2秒前
2秒前
宇称yu发布了新的文献求助10
2秒前
Owen应助40780采纳,获得10
3秒前
4秒前
北长尾山雀完成签到,获得积分10
4秒前
carpybala完成签到,获得积分20
4秒前
5秒前
7秒前
阔达磬发布了新的文献求助10
8秒前
在水一方应助li采纳,获得10
8秒前
lessio完成签到,获得积分10
8秒前
Dawn完成签到,获得积分10
8秒前
carpybala发布了新的文献求助10
9秒前
10秒前
DDDD发布了新的文献求助30
10秒前
务实水池完成签到,获得积分10
10秒前
F_echo发布了新的文献求助10
10秒前
饱满的凡雁完成签到,获得积分20
11秒前
12秒前
要你命三千完成签到,获得积分20
14秒前
天天快乐应助机灵的团采纳,获得10
14秒前
安徒完成签到,获得积分10
14秒前
zoey发布了新的文献求助10
15秒前
欢喜烧鹅发布了新的文献求助10
15秒前
猪猪hero发布了新的文献求助10
15秒前
宋宋完成签到 ,获得积分20
16秒前
锅锅发布了新的文献求助10
16秒前
务实水池发布了新的文献求助10
18秒前
北风发布了新的文献求助50
18秒前
善学以致用应助dan采纳,获得10
18秒前
我是老大应助松果采纳,获得10
21秒前
在水一方应助欢喜烧鹅采纳,获得10
22秒前
22秒前
23秒前
23秒前
25秒前
感动的樱桃给感动的樱桃的求助进行了留言
25秒前
上官若男应助痴情的冰真采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263120
求助须知:如何正确求助?哪些是违规求助? 4423828
关于积分的说明 13770773
捐赠科研通 4298702
什么是DOI,文献DOI怎么找? 2358641
邀请新用户注册赠送积分活动 1354886
关于科研通互助平台的介绍 1316150