Metabolomics on depression: A comparison of clinical and animal research

代谢组学 重性抑郁障碍 巴比妥酸 医学 萧条(经济学) 生物信息学 内科学 生物 精神科 心情 受体 NMDA受体 宏观经济学 经济
作者
Yibo Wang,Xinyi Cai,Yuchen Ma,Yang Yang,Chen‐Wei Pan,Xiaohong Zhu,Chaofu Ke
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:349: 559-568 被引量:33
标识
DOI:10.1016/j.jad.2024.01.053
摘要

Depression is a major cause of suicide and mortality worldwide. This study aims to conduct a systematic review to identify metabolic biomarkers and pathways for major depressive disorder (MDD), a prevalent subtype of clinical depression. We searched for metabolomics studies on depression published between January 2000 and January 2023 in the PubMed and Web of Science databases. The reported metabolic biomarkers were systematically evaluated and compared. Pathway analysis was implemented using MetaboAnalyst 5.0. We included 26 clinical studies on MDD and 78 metabolomics studies on depressive-like animal models. A total of 55 and 77 high-frequency metabolites were reported consistently in two-thirds of clinical and murine studies, respectively. In the comparison between murine and clinical studies, we identified 9 consistently changed metabolites (tryptophan, tyrosine, phenylalanine, methionine, fumarate, valine, deoxycholic acid, pyruvate, kynurenic acid) in the blood, 1 consistently altered metabolite (indoxyl sulfate) in the urine and 14 disturbed metabolic pathways in both types of studies. These metabolic dysregulations and pathways are mainly implicated in enhanced inflammation, impaired neuroprotection, reduced energy metabolism, increased oxidative stress damage and disturbed apoptosis, laying solid molecular foundations for MDD. Due to unavailability of original data like effect-size results in many metabolomics studies, a meta-analysis cannot be conducted, and confounding factors cannot be fully ruled out. This systematic review delineated metabolic biomarkers and pathways related to depression in the murine and clinical samples, providing opportunities for early diagnosis of MDD and the development of novel diagnostic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玻璃弹珠完成签到,获得积分10
刚刚
水蜜桃完成签到 ,获得积分10
1秒前
1秒前
Sigma完成签到,获得积分20
1秒前
xixi很困完成签到,获得积分10
2秒前
2秒前
李海平完成签到 ,获得积分10
2秒前
3秒前
3秒前
活泼忆丹完成签到,获得积分10
3秒前
Magpie完成签到,获得积分10
3秒前
4秒前
5秒前
月月发布了新的文献求助10
6秒前
jenningseastera应助LiWen采纳,获得10
6秒前
6秒前
武淑晴发布了新的文献求助10
7秒前
8秒前
luibia发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
愉快书琴发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
落寞访云发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助OVO采纳,获得10
12秒前
12秒前
嗨好完成签到,获得积分10
12秒前
12秒前
hello_25baby完成签到,获得积分10
12秒前
时玥发布了新的文献求助10
14秒前
AKRAMJUAIM发布了新的文献求助10
14秒前
14秒前
ban发布了新的文献求助10
14秒前
15秒前
我爱科研发布了新的文献求助50
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738119
求助须知:如何正确求助?哪些是违规求助? 5375696
关于积分的说明 15337007
捐赠科研通 4881243
什么是DOI,文献DOI怎么找? 2623424
邀请新用户注册赠送积分活动 1572144
关于科研通互助平台的介绍 1528995