Evaluation of ChatGPT and Google Bard Using Prompt Engineering in Cancer Screening Algorithms

计算机科学 临床决策 变量(数学) 放射科 医学 家庭医学 数学 数学分析
作者
Daniel Nguyen,Daniel R. Swanson,Alex Newbury,Young H. Kim
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (5): 1799-1804 被引量:32
标识
DOI:10.1016/j.acra.2023.11.002
摘要

Large language models (LLMs) such as ChatGPT and Bard have emerged as powerful tools in medicine, showcasing strong results in tasks such as radiology report translations and research paper drafting. While their implementation in clinical practice holds promise, their response accuracy remains variable. This study aimed to evaluate the accuracy of ChatGPT and Bard in clinical decision-making based on the American College of Radiology Appropriateness Criteria for various cancers. Both LLMs were evaluated in terms of their responses to open-ended (OE) and select-all-that-apply (SATA) prompts. Furthermore, the study incorporated prompt engineering (PE) techniques to enhance the accuracy of LLM outputs. The results revealed similar performances between ChatGPT and Bard on OE prompts, with ChatGPT exhibiting marginally higher accuracy in SATA scenarios. The introduction of PE also marginally improved LLM outputs in OE prompts but did not enhance SATA responses. The results highlight the potential of LLMs in aiding clinical decision-making processes, especially when guided by optimally engineered prompts. Future studies in diverse clinical situations are imperative to better understand the impact of LLMs in radiology. Large language models (LLMs) such as ChatGPT and Bard have emerged as powerful tools in medicine, showcasing strong results in tasks such as radiology report translations and research paper drafting. While their implementation in clinical practice holds promise, their response accuracy remains variable. This study aimed to evaluate the accuracy of ChatGPT and Bard in clinical decision-making based on the American College of Radiology Appropriateness Criteria for various cancers. Both LLMs were evaluated in terms of their responses to open-ended (OE) and select-all-that-apply (SATA) prompts. Furthermore, the study incorporated prompt engineering (PE) techniques to enhance the accuracy of LLM outputs. The results revealed similar performances between ChatGPT and Bard on OE prompts, with ChatGPT exhibiting marginally higher accuracy in SATA scenarios. The introduction of PE also marginally improved LLM outputs in OE prompts but did not enhance SATA responses. The results highlight the potential of LLMs in aiding clinical decision-making processes, especially when guided by optimally engineered prompts. Future studies in diverse clinical situations are imperative to better understand the impact of LLMs in radiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助感动澜采纳,获得10
刚刚
归尘发布了新的文献求助10
刚刚
yang完成签到,获得积分10
刚刚
K123完成签到,获得积分10
1秒前
上官若男应助jjjj佳采纳,获得10
2秒前
ahsisalah完成签到,获得积分10
2秒前
丘比特应助lewis17采纳,获得30
3秒前
weerfi完成签到,获得积分10
3秒前
金金发布了新的文献求助10
4秒前
4秒前
4秒前
斯文败类应助111采纳,获得10
4秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
yyds应助春夏秋冬采纳,获得50
8秒前
DJL完成签到 ,获得积分10
8秒前
hh完成签到,获得积分10
8秒前
10秒前
龙俊利完成签到,获得积分20
10秒前
330发布了新的文献求助10
10秒前
xiaogao发布了新的文献求助10
10秒前
11秒前
11秒前
情怀应助追寻依波采纳,获得10
11秒前
12秒前
know发布了新的文献求助10
12秒前
Hikx完成签到 ,获得积分10
12秒前
敏感的鸿煊完成签到,获得积分10
13秒前
13秒前
14秒前
123456kk发布了新的文献求助10
14秒前
秦奥洋发布了新的文献求助10
16秒前
16秒前
友好亚男完成签到,获得积分10
17秒前
852应助111采纳,获得10
18秒前
龙俊利发布了新的文献求助10
18秒前
HN洪完成签到,获得积分10
18秒前
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Optics of Liquid Crystal Displays, 2nd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615791
求助须知:如何正确求助?哪些是违规求助? 4700461
关于积分的说明 14908600
捐赠科研通 4743111
什么是DOI,文献DOI怎么找? 2548307
邀请新用户注册赠送积分活动 1511862
关于科研通互助平台的介绍 1473857