An improved Bi-LSTM method based on heterogeneous features fusion and attention mechanism for ECG recognition

计算机科学 人工智能 模式识别(心理学) 特征(语言学) 水准点(测量) 加权 噪音(视频) 深度学习 信号(编程语言) 相似性(几何) 特征提取 机器学习 图像(数学) 医学 哲学 语言学 大地测量学 放射科 程序设计语言 地理
作者
Chaoyang Song,Z. Zhou,Yue Yu,Manman Shi,Jingxiang Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107903-107903 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107903
摘要

Electrocardiogram (ECG) plays a critical role in early prevention and diagnosis of cardiovascular diseases. However, extracting powerful deep features from ECG signal for recognition is still a challenging problem today due to the variable abnormal rhythms and noise distribution. This work proposes a Bi-LSTM algorithm based on heterogeneous features fusion and attention mechanism (HFFAM + Bi-LSTM). Combining the empirical features and the features learned by the deep learning network, HFFAM + Bi-LSTM can comprehensively extract the temporal frequency information and spatial structure information of the ECG signal. Meanwhile, a novel attention mechanism based on improved DTW (AM-DTW) is designed to analyze and control the fusion process of features. The role of AM-DTW in HFFAM + Bi-LSTM is twofold, one is to measure the feature similarity between ECG signal sets with different labels using the improved DTW, and the other is to distinguish the features into isomorphic and heterogeneous features as well as adaptive weighting of the features. It is worth mentioning that overly similar isomorphic features are filtered out to further optimize the algorithm. Thus, HFFAM + Bi-LSTM has the advantage of strengthening the heterogeneous information in the feature subspace while accounting for the isomorphic features. The accuracy of HFFAM + Bi-LSTM reaches up to 98.1 % and 97.1 % on the simulated and real datasets, respectively. Compared to the all benchmark models, the classification accuracy of HFFAM + Bi-LSTM is 1.3 % higher than the best. The experiments also demonstrate that HFFAM + Bi-LSTM has better performance compared with existing methods, which provides a new scheme for automatic detection of ECG signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在封我就急眼啦完成签到,获得积分10
1秒前
gh完成签到,获得积分10
1秒前
动漫大师发布了新的文献求助10
3秒前
CodeCraft应助现实的又琴采纳,获得20
6秒前
荡乎宇宙如虚舟完成签到,获得积分10
7秒前
CipherSage应助一一一采纳,获得10
9秒前
10秒前
喜洋洋完成签到 ,获得积分10
10秒前
10秒前
a小木头完成签到,获得积分10
12秒前
领导范儿应助等等采纳,获得10
14秒前
15秒前
18秒前
小李老博应助Alex采纳,获得10
18秒前
蛋挞发布了新的文献求助10
18秒前
19秒前
库儿拉索完成签到,获得积分10
21秒前
22秒前
星辰大海应助zwy采纳,获得10
22秒前
嗯嗯发布了新的文献求助10
23秒前
那个笨笨发布了新的文献求助10
23秒前
26秒前
蛋挞完成签到,获得积分10
29秒前
29秒前
美味蟹皇堡完成签到,获得积分10
30秒前
称心涵柳发布了新的文献求助10
31秒前
娇娇大王完成签到,获得积分10
35秒前
CEJ发布了新的文献求助10
35秒前
小宝关注了科研通微信公众号
37秒前
37秒前
桐桐应助称心涵柳采纳,获得10
38秒前
脑洞疼应助沉静青旋采纳,获得10
38秒前
TT发布了新的文献求助200
38秒前
古藤完成签到 ,获得积分10
38秒前
39秒前
痴情的靖柔完成签到 ,获得积分10
40秒前
那个笨笨完成签到,获得积分10
41秒前
充电宝应助McGrady采纳,获得10
42秒前
CodeCraft应助天明采纳,获得10
43秒前
qwepirt完成签到,获得积分10
44秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800426
求助须知:如何正确求助?哪些是违规求助? 3345655
关于积分的说明 10326568
捐赠科研通 3062128
什么是DOI,文献DOI怎么找? 1680879
邀请新用户注册赠送积分活动 807263
科研通“疑难数据库(出版商)”最低求助积分说明 763572