Self-assembly of peptides: The acceleration by molecular dynamics simulations and machine learning

加速度 分子动力学 动力学(音乐) 计算机科学 纳米技术 统计物理学 材料科学 物理 化学 经典力学 计算化学 声学
作者
Nana Cao,Kang Huang,Jianjun Xie,Hui Wang,Xinghua Shi
出处
期刊:Nano Today [Elsevier BV]
卷期号:55: 102160-102160 被引量:19
标识
DOI:10.1016/j.nantod.2024.102160
摘要

Peptides, biopolymeric compounds connected by peptide bonds, have garnered significant attention in recent years as their potential wide applications in fields such as drug delivery, tissue engineering, and antibiotics. Peptides exhibit excellent biocompatibility and stability due to their structural similarities to many bioactive substances found in human bodies. The self-assembly of peptides has piqued considerable interest with groundbreaking advancements achieved in experimental research. However, it is still a big challenge to establish comprehensive theoretical model to accurately describe the behavior of peptide self-assembly. Current peptide self-assembly designs primarily rely on experimental outcomes and general rules, which is inefficient and susceptible to human errors. In recent years, thanks to rapid advancements in computer techniques and theoretical methods, computational research has become a vital tool in complementing experimental research with rapid development witted in this field. This review delves into the description of peptide self-assembly, covering relevant sequences, structures, morphologies, rules, and application areas. It places particular emphasis on the recent progress in computational methods such as molecular dynamics (MD) simulations and machine learning (ML) techniques in the study. Finally, we provide a perspective on the application of computational methods to expedite exploration in the realm of multi-peptide self-assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊风完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
我是老大应助pengyh8采纳,获得10
4秒前
Zoki完成签到,获得积分10
5秒前
5秒前
wangli发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
iNk应助xiejinhui采纳,获得10
6秒前
汉堡包应助鲤鱼书南采纳,获得10
6秒前
zhuhaiting完成签到,获得积分10
6秒前
Lucas应助好柿豆花生采纳,获得30
6秒前
Gemini完成签到,获得积分10
6秒前
Jasper应助genius_yue采纳,获得30
6秒前
完美世界应助徐智秀采纳,获得10
7秒前
慕青应助鹏飞采纳,获得10
7秒前
完美世界应助鹏飞采纳,获得10
7秒前
bkagyin应助鹏飞采纳,获得10
7秒前
香蕉觅云应助鹏飞采纳,获得10
7秒前
orixero应助鹏飞采纳,获得10
7秒前
8秒前
NexusExplorer应助SSY采纳,获得10
8秒前
安详的向露完成签到,获得积分10
8秒前
8秒前
胡航航发布了新的文献求助10
8秒前
长安发布了新的文献求助10
9秒前
PengM完成签到,获得积分10
9秒前
新威宝贝发布了新的文献求助10
9秒前
两臂阿童木完成签到,获得积分10
9秒前
淡定汉堡发布了新的文献求助10
9秒前
沙怜蕾发布了新的文献求助10
9秒前
9秒前
霸气的若翠完成签到,获得积分10
10秒前
haha发布了新的文献求助10
10秒前
10秒前
充电宝应助大气凝云采纳,获得10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
简明儿童少年国际神经精神访谈(MINI-KID)中文版 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025960
求助须知:如何正确求助?哪些是违规求助? 3565767
关于积分的说明 11350144
捐赠科研通 3296692
什么是DOI,文献DOI怎么找? 1815837
邀请新用户注册赠送积分活动 890234
科研通“疑难数据库(出版商)”最低求助积分说明 813435