Real-time estimation of EEG-based engagement in different tasks

脑电图 计算机科学 估计 人工智能 语音识别 心理学 神经科学 经济 管理
作者
Angela Natalizio,Sebastian Sieghartsleitner,Leonhard Schreiner,Martin Walchshofer,Antonio Espósito,Josef Scharinger,Harald Pretl,Pasquale Arpaïa,Marco Parvis,Jordi Solé‐Casals,Marc Sebastián-Romagosa,Rupert Ortner,Christoph Guger
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016014-016014 被引量:7
标识
DOI:10.1088/1741-2552/ad200d
摘要

Abstract Objective. Recent trends in brain–computer interface (BCI) research concern the passive monitoring of brain activity, which aim to monitor a wide variety of cognitive states. Engagement is such a cognitive state, which is of interest in contexts such as learning, entertainment or rehabilitation. This study proposes a novel approach for real-time estimation of engagement during different tasks using electroencephalography (EEG). Approach. Twenty-three healthy subjects participated in the BCI experiment. A modified version of the d2 test was used to elicit engagement. Within-subject classification models which discriminate between engaging and resting states were trained based on EEG recorded during a d2 test based paradigm. The EEG was recorded using eight electrodes and the classification model was based on filter-bank common spatial patterns and a linear discriminant analysis. The classification models were evaluated in cross-task applications, namely when playing Tetris at different speeds (i.e. slow, medium, fast) and when watching two videos (i.e. advertisement and landscape video). Additionally, subjects’ perceived engagement was quantified using a questionnaire. Main results. The models achieved a classification accuracy of 90% on average when tested on an independent d2 test paradigm recording. Subjects’ perceived and estimated engagement were found to be greater during the advertisement compared to the landscape video ( p = 0.025 and p < 0.001, respectively); greater during medium and fast compared to slow Tetris speed ( p < 0.001, respectively); not different between medium and fast Tetris speeds. Additionally, a common linear relationship was observed for perceived and estimated engagement ( r rm = 0.44, p < 0.001). Finally, theta and alpha band powers were investigated, which respectively increased and decreased during more engaging states. Significance. This study proposes a task-specific EEG engagement estimation model with cross-task capabilities, offering a framework for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小温温完成签到 ,获得积分10
刚刚
浮游应助娃娃跑乡采纳,获得10
3秒前
rgjipeng完成签到,获得积分0
5秒前
mufcyang完成签到,获得积分10
5秒前
小木木完成签到 ,获得积分10
8秒前
单薄乐珍完成签到 ,获得积分0
9秒前
ccc完成签到 ,获得积分10
11秒前
静静完成签到 ,获得积分10
12秒前
sunhhhh完成签到 ,获得积分10
15秒前
不扯先生完成签到,获得积分10
16秒前
Windsyang完成签到,获得积分10
17秒前
无奈醉柳完成签到 ,获得积分10
17秒前
8D完成签到,获得积分10
17秒前
了0完成签到 ,获得积分10
24秒前
25秒前
我就想看看文献完成签到 ,获得积分10
26秒前
30秒前
32秒前
南城雨落完成签到,获得积分10
32秒前
醋溜爆肚儿完成签到,获得积分10
33秒前
复杂的沛儿完成签到 ,获得积分10
38秒前
sadascaqwqw完成签到,获得积分10
42秒前
隐形曼青应助科研通管家采纳,获得10
48秒前
丘比特应助科研通管家采纳,获得10
48秒前
Akim应助科研通管家采纳,获得10
48秒前
48秒前
qqq完成签到 ,获得积分10
50秒前
1111完成签到 ,获得积分10
50秒前
辛勤安梦完成签到,获得积分10
51秒前
今年我必胖20斤完成签到,获得积分10
52秒前
笨笨凡松完成签到 ,获得积分10
53秒前
Raymond完成签到,获得积分10
53秒前
晓书完成签到 ,获得积分10
53秒前
Alvin完成签到 ,获得积分10
55秒前
penzer完成签到 ,获得积分10
55秒前
嘻嘻我完成签到,获得积分10
57秒前
欢呼的茗茗完成签到 ,获得积分10
57秒前
58秒前
兰花二狗他爹完成签到,获得积分10
58秒前
2027法硕人完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4730454
求助须知:如何正确求助?哪些是违规求助? 4085634
关于积分的说明 12634529
捐赠科研通 3793513
什么是DOI,文献DOI怎么找? 2094833
邀请新用户注册赠送积分活动 1120725
科研通“疑难数据库(出版商)”最低求助积分说明 996841