A growing soft robot with climbing plant–inspired adaptive behaviors for navigation in unstructured environments

攀登 机器人 人工智能 计算机科学 机器人学 软机器人 自主机器人 模拟 移动机器人 工程类 结构工程
作者
Emanuela Del Dottore,Alessio Mondini,Nick Rowe,Barbara Mazzolai
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:9 (86): eadi5908-eadi5908 被引量:51
标识
DOI:10.1126/scirobotics.adi5908
摘要

Self-growing robots are an emerging solution in soft robotics for navigating, exploring, and colonizing unstructured environments. However, their ability to grow and move in heterogeneous three-dimensional (3D) spaces, comparable with real-world conditions, is still developing. We present an autonomous growing robot that draws inspiration from the behavioral adaptive strategies of climbing plants to navigate unstructured environments. The robot mimics climbing plants’ apical shoot to sense and coordinate additive adaptive growth via an embedded additive manufacturing mechanism and a sensorized tip. Growth orientation, comparable with tropisms in real plants, is dictated by external stimuli, including gravity, light, and shade. These are incorporated within a vector field method to implement the preferred adaptive behavior for a given environment and task, such as growth toward light and/or against gravity. We demonstrate the robot’s ability to navigate through growth in relation to voids, potential supports, and thoroughfares in otherwise complex habitats. Adaptive twining around vertical supports can provide an escape from mechanical stress due to self-support, reduce energy expenditure for construction costs, and develop an anchorage point to support further growth and crossing gaps. The robot adapts its material printing parameters to develop a light body and fast growth to twine on supports or a tougher body to enable self-support and cross gaps. These features, typical of climbing plants, highlight a potential for adaptive robots and their on-demand manufacturing. They are especially promising for applications in exploring, monitoring, and interacting with unstructured environments or in the autonomous construction of complex infrastructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开放雪珊发布了新的文献求助10
2秒前
刘雨森发布了新的文献求助10
2秒前
2秒前
3秒前
浮浮世世发布了新的文献求助50
3秒前
孚游完成签到,获得积分10
3秒前
orixero应助dio采纳,获得10
3秒前
3秒前
泽牧发布了新的文献求助10
3秒前
浪里白条完成签到,获得积分10
4秒前
赘婿应助漂亮的抽屉采纳,获得10
4秒前
欣喜的素完成签到,获得积分10
4秒前
英俊的铭应助hhhhhh采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
阳光下的沙滩城堡完成签到,获得积分10
7秒前
NexusExplorer应助刘雨森采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
書生应助科研通管家采纳,获得20
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
joeay完成签到 ,获得积分10
9秒前
蓝韵应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
轻松元柏完成签到,获得积分10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Manphie应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
ChenxiPan发布了新的文献求助10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351421
求助须知:如何正确求助?哪些是违规求助? 4484506
关于积分的说明 13959313
捐赠科研通 4384100
什么是DOI,文献DOI怎么找? 2408752
邀请新用户注册赠送积分活动 1401355
关于科研通互助平台的介绍 1374851