Uncertainty-guided hierarchical frequency domain Transformer for image restoration

计算机科学 频域 人工智能 快速傅里叶变换 空间频率 卷积神经网络 卷积(计算机科学) 模式识别(心理学) 变压器 傅里叶变换 计算机视觉 算法 人工神经网络 数学 电压 数学分析 物理 量子力学 光学
作者
Mingwen Shao,Yuanjian Qiao,Deyu Meng,Wangmeng Zuo
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:263: 110306-110306 被引量:24
标识
DOI:10.1016/j.knosys.2023.110306
摘要

Existing convolutional neural network (CNN)-based and vision Transformer (ViT)-based image restoration methods are usually explored in the spatial domain. However, we employ Fourier analysis to show that these spatial domain models cannot perceive the entire frequency spectrum of images, i.e., mainly focus on either high-frequency (CNN-based models) or low-frequency components (ViT-based models). This intrinsic limitation results in the partial missing of semantic information and the appearance of artifacts. To address this limitation, we propose a novel uncertainty-guided hierarchical frequency domain Transformer named HFDT to effectively learn both high and low-frequency information while perceiving local and global features. Specifically, to aggregate semantic information from various frequency levels, we propose a dual-domain feature interaction mechanism, in which the global frequency information and local spatial features are extracted by corresponding branches. The frequency domain branch adopts the Fast Fourier Transform (FFT) to convert the features from the spatial domain to the frequency domain, where the global low and high-frequency components are learned with Log-linear complexity. Complementarily, an efficient convolution group is employed in the spatial domain branch to capture local high-frequency details. Moreover, we introduce an uncertainty degradation-guided strategy to efficiently represent degraded prior information, rather than simply distinguishing degraded/non-degraded regions in binary form. Our approach achieves competitive results in several degraded scenarios, including rain streaks, raindrops, motion blur, and defocus blur.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
董科研严发布了新的文献求助10
2秒前
t12s2365_完成签到 ,获得积分10
2秒前
hyt完成签到,获得积分20
4秒前
5秒前
卡比发布了新的文献求助10
5秒前
5秒前
老木虫发布了新的文献求助10
6秒前
科研通AI5应助鲤鱼谷蓝采纳,获得10
6秒前
xxxhl完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
科研小白发布了新的文献求助10
9秒前
9秒前
10秒前
newwen发布了新的文献求助10
11秒前
Eins完成签到 ,获得积分10
12秒前
13秒前
风趣的天真完成签到,获得积分10
14秒前
chen发布了新的文献求助10
15秒前
SciGPT应助老木虫采纳,获得10
17秒前
18秒前
18秒前
Akim应助羊羊采纳,获得10
18秒前
xinzhuoyang发布了新的文献求助10
19秒前
20秒前
上汤PJ完成签到,获得积分10
21秒前
Akim应助安详的念寒采纳,获得10
22秒前
可靠的0完成签到,获得积分10
22秒前
小余完成签到 ,获得积分10
23秒前
23秒前
思源应助hyt采纳,获得10
23秒前
23秒前
23秒前
烟花应助xinzhuoyang采纳,获得10
24秒前
科研小白发布了新的文献求助10
24秒前
24秒前
所所应助甄遥采纳,获得10
25秒前
25秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Rice Blast Fungus and Allied Species: A Monograph of the Fungal Order Magnaporthales 200
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 200
Nitrogen-fixing bacteria in nonleguminous crop plants 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832707
求助须知:如何正确求助?哪些是违规求助? 3375188
关于积分的说明 10487744
捐赠科研通 3094798
什么是DOI,文献DOI怎么找? 1703971
邀请新用户注册赠送积分活动 819723
科研通“疑难数据库(出版商)”最低求助积分说明 771613