计算机科学
目标检测
棱锥(几何)
遥感
人工智能
特征(语言学)
计算机视觉
变更检测
模式识别(心理学)
地质学
语言学
光学
物理
哲学
作者
Dahang Wan,Rongsheng Lu,Sailei Wang,Siyuan Shen,Ting Xu,Xianli Lang
出处
期刊:Remote Sensing
[Multidisciplinary Digital Publishing Institute]
日期:2023-01-20
卷期号:15 (3): 614-614
被引量:53
摘要
Object detection is essential to the interpretation of optical remote sensing images and can serve as a foundation for research into additional visual tasks that utilize remote sensing. However, the object detection network currently employed in optical remote sensing images underutilizes the output of the feature pyramid, so there remains potential for an improved detection. At present, a suitable balance between the detection efficiency and detection effect is difficult to attain. This paper proposes an enhanced YOLOv5 algorithm for object detection in high-resolution optical remote sensing images, utilizing multiple layers of the feature pyramid, a multi-detection-head strategy, and a hybrid attention module to improve the effect of object-detection networks for use with optical remote sensing images. According to the SIMD dataset, the mAP of the proposed method was 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving an improved balance between the detection effect and speed.
科研通智能强力驱动
Strongly Powered by AbleSci AI