亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning strategy-incorporated BiFeO3/Ti3C2 MXene electrochemical platform for simple, rapid detection of Pb2+ with high sensitivity

检出限 材料科学 重复性 电化学 沉积(地质) 纳米技术 色谱法 化学 电极 沉积物 生物 物理化学 古生物学
作者
Hang Yao,Ruimei Wu,Jin Zou,Jiawei Liu,Guanwei Peng,Xu Wang,Weiqi Zhou,Shirong Ai,Limin Lu
出处
期刊:Chemosphere [Elsevier]
卷期号:340: 139728-139728 被引量:17
标识
DOI:10.1016/j.chemosphere.2023.139728
摘要

The electrochemical technique has been increasingly used for the detection of heavy metal ions in the water system. However, the process for determining the optimum experimental conditions was cumbersome, time-consuming, and unsynchronized, resulting in unsatisfactory detection efficiency. Herein, a new machine learning (ML) strategy combined with BiFeO3/Ti3C2 MXene (BiFeO3/MXene) was used to fabricate a simple but efficient electrochemical Pb2+ sensor. The interconnected BiFeO3/MXene composites prepared by a hydrothermal method possessed an interconnected conductive framework, abundant active sites, and a large surface area, which gave them excellent electronic conductivity and high accumulation of Pb2+. Meanwhile, ML methods such as back-propagation artificial neural network (BPANN) and genetic algorithm (GA) combined with orthogonal experimental design (OED) were used to optimize sensor parameters such as the pH of the supporting electrolyte, the BiFeO3/MXene content, deposition potential, and deposition time. Compared with OED and the one factor at a time (OFAT) methods, the OED-ML method greatly simplified the experimental procedures and improved the electrochemical detection performance. The developed sensor showed superior detection performance for Pb2+ with a detection limit of 0.0001 μg L−1 using the OED-ML method, which was much lower than that of the OED and OFAT methods (0.0003 μg L−1). In addition, the sensor showed good repeatability, reproducibility, stability, and interference capability. The feasibility of the method was verified by detecting Pb2+ in lake samples with recoveries ranging from 98.79% to 101.3%. To our knowledge, the ML strategy was introduced for the first time in an electrochemical sensor for Pb2+ detection, which proved the feasibility and practicality of ML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
16秒前
shhoing应助科研通管家采纳,获得10
16秒前
常有李完成签到,获得积分10
30秒前
Akashi完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
shennie发布了新的文献求助30
1分钟前
科研通AI2S应助shennie采纳,获得10
1分钟前
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助艺小呆采纳,获得10
2分钟前
2分钟前
momo发布了新的文献求助10
3分钟前
momo完成签到,获得积分10
4分钟前
4分钟前
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
MchemG完成签到,获得积分0
5分钟前
5分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
和风完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
淡定自中发布了新的文献求助10
6分钟前
CodeCraft应助杨柳9203采纳,获得10
6分钟前
7分钟前
dynamoo应助jqliu采纳,获得10
7分钟前
jqliu完成签到,获得积分10
7分钟前
level完成签到 ,获得积分10
7分钟前
斯文败类应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543405
求助须知:如何正确求助?哪些是违规求助? 4629504
关于积分的说明 14611266
捐赠科研通 4570834
什么是DOI,文献DOI怎么找? 2505960
邀请新用户注册赠送积分活动 1483168
关于科研通互助平台的介绍 1454578