已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Edge AI-based early anomaly detection of LNG Carrier Main Engine systems

异常检测 自编码 计算机科学 残余物 异常(物理) GSM演进的增强数据速率 深度学习 人工智能 实时计算 机器学习 物理 算法 凝聚态物理
作者
Dong Hyeon Kim,T. Kim,Min-JI An,Yonghun Cho,Yunju Baek
标识
DOI:10.1109/oceanslimerick52467.2023.10244419
摘要

This paper proposes a novel deep learning model and Edge-AI technology for early detection of anomalies in the main engine system of LNG carriers. The main engine system is a critical component of a ship, and any abnormalities can lead to serious accidents. Conventional anomaly detection methods do not consider the residuals of time-series forecasting and the transferability of the model to multiple ships. The proposed deep learning model consists of two LSTM-based Revin-AutoEncoder models, which utilize the Revin technique to remove non-stationary information and compensate for the residual generated by unstable time-series forecasting. Furthermore, Edge-AI technology is employed to perform model inference without communicating with a central server, enabling fast detection and response to abnormalities, preventing network congestion, and reducing costs. The effectiveness of the proposed method in detecting anomalies in a new LNG carrier with various equipment and systems is experimentally demonstrated, overcoming the challenge of anomaly detection caused by the diverse equipment and systems of a ship. The experimental results showed a maximum recall performance of 0.78. The proposed system show the possibility of the learned model performing early anomaly detection on another ship and is expected to contribute to the development of anomaly detection technology in various industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36发布了新的文献求助10
3秒前
Chaos完成签到 ,获得积分10
4秒前
C9完成签到 ,获得积分10
6秒前
云上人完成签到 ,获得积分10
7秒前
笑点低凝荷完成签到,获得积分10
9秒前
疯狂喵完成签到 ,获得积分10
10秒前
10秒前
Vincy完成签到,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
孤独尔白应助科研通管家采纳,获得150
13秒前
Orange应助科研通管家采纳,获得10
13秒前
14秒前
xylor完成签到 ,获得积分10
15秒前
眼里有光的阿墨完成签到 ,获得积分10
15秒前
lqqq完成签到 ,获得积分10
15秒前
16秒前
18秒前
rudjs完成签到,获得积分10
18秒前
甘sir完成签到 ,获得积分10
21秒前
田様应助贰拾采纳,获得10
22秒前
ZaZa完成签到,获得积分10
22秒前
23秒前
怡然魂幽发布了新的文献求助10
23秒前
希望天下0贩的0应助yyt采纳,获得10
23秒前
任性大米完成签到 ,获得积分10
23秒前
用户12306完成签到,获得积分10
24秒前
24秒前
sdf23应助迷人以寒采纳,获得10
24秒前
25秒前
25秒前
25秒前
25秒前
25秒前
25秒前
26秒前
26秒前
26秒前
26秒前
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798340
求助须知:如何正确求助?哪些是违规求助? 3343790
关于积分的说明 10317628
捐赠科研通 3060529
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296