亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AttBiLFNet: A novel hybrid network for accurate and efficient arrhythmia detection in imbalanced ECG signals

计算机科学 卷积神经网络 人工智能 光学(聚焦) 模式识别(心理学) 班级(哲学) 鉴定(生物学) 人工神经网络 心律失常 机器学习 数据挖掘 医学 心脏病学 心房颤动 物理 光学 生物 植物
作者
Enes Efe,Emrehan Yavşan
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:21 (4): 5863-5880
标识
DOI:10.3934/mbe.2024259
摘要

<abstract> <p>Within the domain of cardiovascular diseases, arrhythmia is one of the leading anomalies causing sudden deaths. These anomalies, including arrhythmia, are detectable through the electrocardiogram, a pivotal component in the analysis of heart diseases. However, conventional methods like electrocardiography encounter challenges such as subjective analysis and limited monitoring duration. In this work, a novel hybrid model, AttBiLFNet, was proposed for precise arrhythmia detection in ECG signals, including imbalanced class distributions. AttBiLFNet integrates a Bidirectional Long Short-Term Memory (BiLSTM) network with a convolutional neural network (CNN) and incorporates an attention mechanism using the focal loss function. This architecture is capable of autonomously extracting features by harnessing BiLSTM's bidirectional information flow, which proves advantageous in capturing long-range dependencies. The attention mechanism enhances the model's focus on pertinent segments of the input sequence, which is particularly beneficial in class imbalance classification scenarios where minority class samples tend to be overshadowed. The focal loss function effectively addresses the impact of class imbalance, thereby improving overall classification performance. The proposed AttBiLFNet model achieved 99.55% accuracy and 98.52% precision. Moreover, performance metrics such as MF1, K score, and sensitivity were calculated, and the model was compared with various methods in the literature. Empirical evidence showed that AttBiLFNet outperformed other methods in terms of both accuracy and computational efficiency. The introduced model serves as a reliable tool for the timely identification of arrhythmias.</p> </abstract>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幽默白秋发布了新的文献求助10
4秒前
cheney完成签到 ,获得积分10
5秒前
8秒前
14秒前
yang发布了新的文献求助20
19秒前
27秒前
42秒前
Joceelyn完成签到 ,获得积分10
46秒前
renshiwufei完成签到,获得积分10
48秒前
59秒前
1分钟前
飘逸的雁露完成签到,获得积分10
1分钟前
1分钟前
Suraim完成签到,获得积分10
1分钟前
1分钟前
orixero应助zhnn采纳,获得20
1分钟前
lulu发布了新的文献求助10
1分钟前
jader完成签到,获得积分10
1分钟前
1分钟前
SciGPT应助烛夜黎采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
烛夜黎发布了新的文献求助10
1分钟前
所所应助烛夜黎采纳,获得10
1分钟前
风趣的天问完成签到 ,获得积分10
2分钟前
领导范儿应助hhee采纳,获得10
2分钟前
2分钟前
阿乌大王完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
hhee发布了新的文献求助10
2分钟前
在南方看北方完成签到,获得积分10
2分钟前
烟花应助lulu采纳,获得10
2分钟前
2分钟前
欣欣子完成签到,获得积分10
2分钟前
看不了一点文献应助lijiuyi采纳,获得10
2分钟前
sunstar完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407769
求助须知:如何正确求助?哪些是违规求助? 4525296
关于积分的说明 14101616
捐赠科研通 4439129
什么是DOI,文献DOI怎么找? 2436611
邀请新用户注册赠送积分活动 1428604
关于科研通互助平台的介绍 1406670