Rapid determination of starch and alcohol contents in fermented grains by hyperspectral imaging combined with data fusion techniques

高光谱成像 偏最小二乘回归 人工智能 淀粉 模式识别(心理学) 近红外光谱 阿达布思 主成分分析 支持向量机 预处理器 融合 计算机科学 数学 化学 食品科学 机器学习 生物 语言学 哲学 神经科学
作者
Yan Liang,Jianping Tian,Xinjun Hu,Yuexiang Huang,Kangling He,Liangliang Xie,Haili Yang,Dan Huang,Yifei Zhou,Yuanyuan Xia
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (6): 3540-3553 被引量:5
标识
DOI:10.1111/1750-3841.17102
摘要

Abstract Starch and alcohol serve as pivotal indicators in assessing the quality of lees fermentation. In this paper, two hyperspectral imaging (HSI) techniques (visible–near‐infrared (Vis–NIR) and NIR) were utilized to acquire separate HSI data, which were then fused and analyzed toforecast the starch and alcohol contents during the fermentation of lees. Five preprocessing methods were first used to preprocess the Vis–NIR, NIR, and the fused Vis–NIR and NIR data, after which partial least squares regression models were established to determine the best preprocessing method. Following, competitive adaptive reweighted sampling, successive projection algorithm, and principal component analysis algorithms were used to extract the characteristic wavelengths to accurately predict the starch and alcohol levels. Finally, support vector machine (SVM)‐AdaBoost and XGBoost models were built based on the low‐level fusion (LLF) and intermediate‐level fusion (ILF) of single Vis–NIR and NIR as well as the fused data. The results showed that the SVM‐AdaBoost model built using the LLF data afterpreprocessing by standard normalized variable was most accurate for predicting the starch content, with an of 0.9976 and a root mean square error of prediction (RMSEP) of 0.0992. The XGBoost model built using ILF data was most accurate for predicting the alcohol content, with an of 0.9969 and an RMSEP of 0.0605. In conclusion, the analysis of fused data from distinct HSI technologies facilitates rapid and precise determination of the starch and alcohol contents in fermented grains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芑璇完成签到,获得积分10
刚刚
Wjh123456完成签到,获得积分10
1秒前
fzhou完成签到 ,获得积分10
1秒前
cst完成签到,获得积分10
1秒前
电磁鳄完成签到,获得积分10
1秒前
111完成签到,获得积分20
2秒前
2秒前
执着烧鹅完成签到,获得积分10
2秒前
漂亮夏兰完成签到 ,获得积分10
2秒前
千早爱音完成签到,获得积分10
2秒前
houlingwei发布了新的文献求助10
2秒前
寒冷尔蝶完成签到,获得积分10
3秒前
善学以致用应助tyhmugua采纳,获得10
3秒前
Neltharion完成签到,获得积分10
3秒前
wllom完成签到,获得积分20
3秒前
小尘埃完成签到,获得积分10
3秒前
4秒前
单纯乞完成签到,获得积分10
4秒前
4秒前
滴答滴答发布了新的文献求助10
5秒前
浮游应助蛋子s采纳,获得10
5秒前
凡而不庸完成签到,获得积分10
6秒前
LHNini发布了新的文献求助10
6秒前
海鲜完成签到,获得积分10
6秒前
解语花发布了新的文献求助30
6秒前
forge完成签到,获得积分10
7秒前
挽风风风风完成签到,获得积分10
8秒前
wllom发布了新的文献求助10
8秒前
carrie发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助huntme采纳,获得10
8秒前
8秒前
410的大平层有213个杀手完成签到 ,获得积分10
8秒前
疯狂的月亮完成签到,获得积分10
8秒前
8秒前
一台小钢炮完成签到,获得积分10
8秒前
albertwang完成签到 ,获得积分10
9秒前
张庭豪完成签到,获得积分10
9秒前
施不评完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080063
求助须知:如何正确求助?哪些是违规求助? 4298076
关于积分的说明 13390059
捐赠科研通 4121584
什么是DOI,文献DOI怎么找? 2257188
邀请新用户注册赠送积分活动 1261474
关于科研通互助平台的介绍 1195636