亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cardiovascular Disease Genetic Risk Prediction Models: A Systematic Review

疾病 医学 计算机科学 内科学
作者
Sumera Khan,Xianquan Zhan
出处
期刊:IntechOpen eBooks [IntechOpen]
标识
DOI:10.5772/intechopen.1010866
摘要

This review provides a comprehensive evaluation of genetic cardiovascular disease (CVD) risk prediction models developed or validated for the general population. The study aims to assess these models’ methodological quality, predictive performance, and validation approaches. A systematic search of electronic databases was conducted to identify studies published between 1990 and 2024. Data on study design, participant characteristics, predictor variables, statistical modeling approaches, validation methods, and performance metrics were extracted and analyzed. A total of nine studies met the inclusion criteria. Among them, five studies (56%) focused on model development, two studies (22%) performed internal validation, and two studies (22%) were externally validated. The most frequently included predictors were age (n = 9; 100%), sex (n = 7; 78%), LDL cholesterol (n = 6; 67%), and diabetes (n = 5; 56%). The genetic variants most commonly integrated into the models included APOE (n = 4), LPA (n = 5), and PCSK9 (n = 4). The AUROC scores ranged from 0.72 to 0.83, with Hosmer–Lemeshow calibration reported in five studies (56%). Cross-validation was the predominant validation method utilized in 56% of studies, whereas external validation was applied in only 22%. Although polygenic risk scores (PRS) have improved cardiovascular risk prediction, methodological inconsistencies, limited external validation, and lack of standardization remain key challenges. Future research should prioritize large-scale external validation studies, incorporate broader population-based datasets, and establish standardized performance evaluation frameworks to enhance model reliability and clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
胡国伦完成签到 ,获得积分10
23秒前
27秒前
31秒前
Alisha完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助50
48秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
钟钟完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得150
1分钟前
残月初升完成签到,获得积分10
1分钟前
1分钟前
一号小玩家完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Cope完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
Koala04发布了新的文献求助10
3分钟前
黑太阳发布了新的文献求助10
3分钟前
在水一方应助fsz采纳,获得10
3分钟前
3分钟前
3分钟前
fsz发布了新的文献求助10
3分钟前
fsz完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
bdhdbb完成签到,获得积分20
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得30
3分钟前
3分钟前
anyao完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5091497
求助须知:如何正确求助?哪些是违规求助? 4305806
关于积分的说明 13416100
捐赠科研通 4131518
什么是DOI,文献DOI怎么找? 2263164
邀请新用户注册赠送积分活动 1266984
关于科研通互助平台的介绍 1202128