A Risk Prediction Tool for Invasive Melanoma

医学 黑色素瘤 皮肤病科 肿瘤科 内科学 癌症研究
作者
David C. Whiteman,Catherine M. Olsen,Hannah Wang,Matthew H. Law,Rachel Ε. Neale,Nirmala Pandeya
出处
期刊:JAMA Dermatology [American Medical Association]
卷期号:161 (11): 1123-1123
标识
DOI:10.1001/jamadermatol.2025.3028
摘要

Importance Increasingly, strategies to systematically detect melanomas invoke targeted approaches, whereby those at highest risk are prioritized for skin screening. Many tools exist to predict future melanoma risk, but most have limited accuracy and are potentially biased. Objectives To develop an improved melanoma risk prediction tool for invasive melanoma. Design, Setting, and Participants This population-based prospective cohort study (the QSkin Study) in Queensland, Australia, involved 10 years of follow-up from the baseline survey in 2011 and included individuals aged between 40 to 69 years who were melanoma-free at baseline and completed a comprehensive risk factor survey at recruitment. The data analysis was conducted from October 2024 to April 2025. Exposures Thirty-one candidate variables collected at baseline were identified a priori as potential predictors of future risk of invasive melanoma. Main Outcomes and Measures Histologically confirmed invasive melanomas newly diagnosed from baseline through to December 31, 2021, captured by data linkage to the Queensland Cancer Register. Follow-up was censored on diagnosis of melanoma in situ or death. Cox proportional hazards models with forward and backward selection approaches were used to identify the best-fitting model. Results Of 41 919 eligible participants, 55% were female, and the mean (SD) age at baseline was 55.4 (8.2) years. A total of 706 new invasive melanomas were identified during 401 356 person-years of follow-up. The best-fitting model retained 14 predictors (age, sex, ancestry, nevus density, freckling density, hair color, tanning ability, adult sunburns, family history, other cancer prior to baseline, previous skin cancer excisions, previous actinic keratoses, smoking status, and height) and 2 statistical terms (age squared, age-by-sex interaction), yielding an apparent discriminatory accuracy of 0.74 (95% CI, 0.73-0.76). The Youden index was optimized at a screening threshold selecting the top 40% of predicted risk, which captured 74% of cases (number needed to screen = 32). Conclusions and Relevance This cohort study has identified an improved tool that offers enhanced accuracy for predicting the future risk of invasive melanoma compared with existing tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助XIN采纳,获得10
刚刚
尼古拉斯发布了新的文献求助10
3秒前
科研通AI6应助三十三天采纳,获得10
3秒前
嘿嘿应助hua采纳,获得10
5秒前
科研通AI6应助Leon采纳,获得30
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
江吉完成签到 ,获得积分10
10秒前
铁星发布了新的文献求助10
14秒前
15秒前
15秒前
曾婉之发布了新的文献求助10
20秒前
烧冻鸡翅完成签到,获得积分10
20秒前
科研通AI6应助优秀的问枫采纳,获得10
21秒前
JamesPei应助yao chen采纳,获得10
21秒前
钟昊完成签到,获得积分10
21秒前
怡然的服饰发布了新的文献求助200
21秒前
香蕉觅云应助Lusteri采纳,获得10
22秒前
ssx完成签到,获得积分10
22秒前
高夕硕完成签到,获得积分10
22秒前
23秒前
科目三应助无风风采纳,获得10
23秒前
研友_VZG7GZ应助淡如水采纳,获得10
24秒前
24秒前
Redback应助Neilllllllllll采纳,获得30
28秒前
pancake发布了新的文献求助10
29秒前
三十三天完成签到,获得积分10
29秒前
xu应助冷艳的海白采纳,获得10
29秒前
30秒前
31秒前
怜然发布了新的文献求助20
32秒前
曾婉之完成签到,获得积分20
35秒前
haocong发布了新的文献求助10
35秒前
张佳乐发布了新的文献求助10
36秒前
iNk应助pancake采纳,获得10
37秒前
zzzz发布了新的文献求助10
37秒前
青青完成签到,获得积分10
38秒前
39秒前
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716