Opportunities and computational challenges in large-scale whole genome sequencing data analysis

计算生物学 比例(比率) 基因组 生物 计算机科学 数据科学 遗传学 地理 基因 地图学
作者
Hafedh Ben Zaabza,Mohammad Ferdosi,Ismo Strandén,Beatriz C. D. Cuyabano,Mahesh Neupane,I. Misztal,Daniela Lourenço,Cedric Gondro
出处
期刊:Journal of Animal Science [Oxford University Press]
标识
DOI:10.1093/jas/skaf292
摘要

Abstract Genomic selection has been used in animal breeding for c. 15 years and continues to be an important tool in predicting genetic merit in livestock populations. The dairy cattle industry was the first to adopt genomic selection, initially based on some 50K SNP arrays for thousands of animals. Later advances in genome-scanning technologies have enabled inexpensive genotyping and sequencing, leading to wider adoption, and constantly increasing amounts of genomic data, both as to the number of genotyped animals and variants genotyped per animal. Full sequence data are expected to supersede SNP chips in the coming years. We review the methods and computational approaches used with sequence data and the impact of the methods and model assumptions on genomic prediction accuracy. The modeling, development, and applicability of these methods to sequence data are discussed as well as the computational resources required. Sequence data should in principle provide full information of genetic variability, which should lead to higher prediction accuracy. In practice there is limited evidence of additional benefit from using sequence data over medium or high-density SNP panels. This is particularly true for small effective population sizes (Ne) such as cattle populations, where animals within a breed have many common ancestors and thus longer chromosome segments with high linkage disequilibrium (LD) accurately trackable with a relatively small number of markers. A population with a small Ne has long haplotype blocks, from 1 to 5 Mb, making it hard to identify casual variants within blocks. However, in major cattle breeds a medium-density SNP panel is sufficient to tag the blocks themselves, and prediction with large datasets is highly accurate. Clearly, sequence data should not be used directly for genomic prediction, but for identifying putative causal variants to improve the accuracy and stability of subsequent predictions. We show that the best strategy to deal with any large data with high SNP densities is to use only a subset of (important) markers and determine the most appropriate model for exploiting the preselected variants in the genomic evaluation. Novel prediction methods that subset trait-specific informative markers could offer the advantage of using sequence data by potentially linking individuals through underlying functional variants rather than simply through shared haplotype blocks inherited from ancestors. Further research is required to clarify this aspect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助撒旦采纳,获得10
刚刚
刚睡醒完成签到,获得积分10
刚刚
lgq12697应助邓可新采纳,获得10
刚刚
LAN0528完成签到,获得积分10
1秒前
我是老大应助坚强枫采纳,获得10
1秒前
ximalaya2000关注了科研通微信公众号
1秒前
Ning关注了科研通微信公众号
1秒前
建国发布了新的文献求助10
2秒前
缓慢的思烟完成签到,获得积分10
2秒前
嗯对完成签到,获得积分10
2秒前
cxlhzq发布了新的文献求助10
2秒前
2秒前
ballistic发布了新的文献求助10
3秒前
4秒前
过冷风发布了新的文献求助10
4秒前
大模型应助坚强的笑天采纳,获得10
4秒前
4秒前
科研小白完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
公孙朝雨发布了新的文献求助10
7秒前
今后应助yingying采纳,获得30
7秒前
7秒前
CipherSage应助顺心一凤采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
1874发布了新的文献求助10
9秒前
完美世界应助hunter采纳,获得10
9秒前
我是老大应助肖遥采纳,获得10
10秒前
神秘的外星人完成签到,获得积分10
10秒前
优雅的怀莲完成签到,获得积分10
10秒前
10秒前
123发布了新的文献求助10
10秒前
丘比特应助高大迎曼采纳,获得10
10秒前
清秀乌龟发布了新的文献求助10
11秒前
mayxmzhang发布了新的文献求助10
11秒前
ah_junlei完成签到,获得积分10
11秒前
呆呆完成签到,获得积分10
11秒前
碧蓝的凡阳完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664