Drainage Pattern Recognition Combined With Second‐Order Co‐Occurrence Matrices and Global Features in CNN Networks

模式识别(心理学) 订单(交换) 计算机科学 共现 人工智能 业务 财务
作者
Ziqin Shao,Pengcheng Liu,Tinghua Ai,Hao Han
出处
期刊:Transactions in Gis [Wiley]
卷期号:29 (7)
标识
DOI:10.1111/tgis.70127
摘要

ABSTRACT Drainage pattern recognition is an important research problem in terrain knowledge mining, map generalization, and other fields. Accurate identification of river network patterns is helpful to better understand geographical phenomena and optimize the quality of cartography. In this study, a convolutional neural network (CNN) model based on drainage network co‐occurrence matrix and global features is developed to accurately identify drainage patterns. The characteristics of vector river network line elements are quantified efficiently. Co‐occurrence matrix is introduced into local pattern analysis to capture the spatial proximity between river segments and generate multiple co‐occurrence matrices representing the direction and attribute combination of river network. The co‐occurrence matrix is combined with the global properties of the drainage network as the input feature vector of the CNN model. Through the training of a large number of samples and optimization of the network structure, a CNN model specifically for drainage network pattern recognition is formed. To validate the effectiveness of the model, river data from the Boise area, the capital of Idaho, USA, were used for testing and compared with the tested results of the graph‐convolution recognition model. The experimental results show that the present model exhibits a high degree of accuracy and efficiency in river network pattern recognition and also confirms the value of the second‐order co‐occurrence matrix as an effective metric tool for unstructured spatial patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜杜桃子完成签到,获得积分10
1秒前
小林不熬夜完成签到,获得积分10
1秒前
友好醉波完成签到,获得积分10
3秒前
传奇3应助Christina采纳,获得10
4秒前
科研通AI6应助yj采纳,获得30
5秒前
香蕉觅云应助jkhjkhj采纳,获得10
5秒前
chen完成签到,获得积分10
8秒前
小伍同学完成签到,获得积分10
9秒前
zyj完成签到,获得积分10
10秒前
戊烷完成签到,获得积分10
10秒前
跑快点完成签到,获得积分10
10秒前
anan完成签到 ,获得积分10
10秒前
Akim应助zls采纳,获得10
12秒前
夏日汽水完成签到 ,获得积分10
12秒前
andrele应助老唐采纳,获得10
13秒前
Pheonix1998完成签到,获得积分10
14秒前
73Jennie123完成签到,获得积分10
15秒前
柒柒完成签到 ,获得积分10
16秒前
南城花开完成签到 ,获得积分10
17秒前
17秒前
Yang22完成签到,获得积分10
18秒前
筋筋子完成签到,获得积分10
18秒前
英俊的铭应助ajsdXZ采纳,获得10
19秒前
by完成签到,获得积分10
20秒前
一人完成签到,获得积分10
22秒前
niNe3YUE应助wwl采纳,获得10
22秒前
芬芬完成签到 ,获得积分10
23秒前
Medici完成签到,获得积分10
23秒前
黑暗与黎明完成签到 ,获得积分10
24秒前
贪玩水瑶完成签到,获得积分10
24秒前
24秒前
健忘的访文完成签到,获得积分10
24秒前
难得糊涂完成签到,获得积分10
24秒前
大块完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
个性的抽象完成签到 ,获得积分10
24秒前
puritan完成签到 ,获得积分10
24秒前
超级棒棒糖完成签到 ,获得积分10
25秒前
小艾完成签到,获得积分10
25秒前
神经蛙完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600022
求助须知:如何正确求助?哪些是违规求助? 4685803
关于积分的说明 14839504
捐赠科研通 4674748
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505640
关于科研通互助平台的介绍 1471109