数学
行搜索
共轭梯度法
凸性
下降(航空)
非线性共轭梯度法
趋同(经济学)
缩小
下降方向
应用数学
梯度下降
数学优化
梯度法
算法
计算机科学
人工智能
工程类
半径
经济
航空航天工程
人工神经网络
金融经济学
计算机安全
经济增长
作者
Youssef Elboulqe,M. El Maghri
标识
DOI:10.1093/imanum/drae003
摘要
Abstract In this paper, we propose a spectral Fletcher–Reeves conjugate gradient-like method for solving unconstrained bi-criteria minimization problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. The latter further verifies a sufficient descent property that does not depend on the line search nor on any convexity assumption. After proving the existence of a bi-criteria Armijo-type stepsize, global convergence of the proposed algorithm is established. Finally, some numerical results and comparisons with other methods are reported.
科研通智能强力驱动
Strongly Powered by AbleSci AI