亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving SSC detection accuracy of cherry tomatoes by feature synergy and complementary spectral bands combination

特征(语言学) 人工智能 园艺 数学 模式识别(心理学) 计算机科学 生物 语言学 哲学
作者
Yiting Zheng,Penghui Liu,Yong‐Ping Zheng,Lijuan Xie
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:213: 112922-112922
标识
DOI:10.1016/j.postharvbio.2024.112922
摘要

The visible/near-infrared (VIS/NIR) spectroscopy technique has been extensively employed for the non-destructive detection of soluble solids content (SSC) in fruit. However, some existing algorithms and modeling optimization methods for improving the detection accuracy of SSC may be applicable to specific conditions and not universal. To break through this bottleneck problem, we propose a potentially universal strategy based on feature synergy and spectral bands combination of multiple detection modes. Firstly, compared with the commonly used halogen lamp, the xenon lamp was utilized to cover the ultraviolet (UV) range and match the characteristic information of different sugars (glucose, fructose, and sucrose). Furthermore, the spectral fusion method was employed to combine the reflectance and transmittance spectra to improve the cherry tomatoes SSC prediction accuracy with comprehensive data in the UV/VIS/NIR region. Finally, the best results were achieved by the partial least square regression (PLSR) model with spectral bands fusion, yielding the results of R2p, RMSEP, and RPD as 0.9653, 0.1998%, and 5.31, respectively. The same conclusion can also be verified when predicting the SSC in strawberries. Overall, this strategy is potentially universal to improve the prediction accuracy of SSC in fruit by matching light source spectra with characteristic absorption, as well as utilizing comprehensive spectral information in the 200–1100 nm range, providing valuable insights for the practical application of nondestructive detection of fruit internal quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绝世冰淇淋完成签到 ,获得积分10
2秒前
oleskarabach完成签到,获得积分20
7秒前
9秒前
obedVL完成签到,获得积分10
12秒前
plateauman发布了新的文献求助10
14秒前
15秒前
义气雁完成签到 ,获得积分10
18秒前
多肉葡萄发布了新的文献求助10
21秒前
九九完成签到,获得积分10
22秒前
李伟完成签到,获得积分10
33秒前
Ava应助Carrido采纳,获得10
38秒前
搜集达人应助不冻泉的水采纳,获得30
40秒前
54秒前
Carrido发布了新的文献求助10
59秒前
Carrido完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
典雅问寒应助科研通管家采纳,获得10
1分钟前
1分钟前
不冻泉的水完成签到,获得积分10
1分钟前
1分钟前
cao完成签到 ,获得积分10
1分钟前
天涯完成签到 ,获得积分0
2分钟前
ganson完成签到 ,获得积分10
2分钟前
simon完成签到 ,获得积分10
2分钟前
高扬完成签到,获得积分10
3分钟前
吃了吃了完成签到,获得积分10
3分钟前
kakainho发布了新的文献求助10
3分钟前
亚亚完成签到 ,获得积分10
3分钟前
3分钟前
安静的嘚嘚完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
典雅问寒应助科研通管家采纳,获得10
3分钟前
ZAC999发布了新的文献求助10
3分钟前
3分钟前
高山七石发布了新的文献求助10
3分钟前
3分钟前
肖影彤发布了新的文献求助10
3分钟前
3分钟前
Lucifer完成签到,获得积分10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843203
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540518
捐赠科研通 3106021
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823778
科研通“疑难数据库(出版商)”最低求助积分说明 774264