亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Statistical data pre-treatment for residence time distribution studies in pharmaceutical manufacturing

停留时间分布 医药制造业 分布(数学) 制药技术 医学 化学 药理学 数学 色谱法 矿物学 包裹体(矿物) 数学分析
作者
Pooja Bhalode,Sonia M. Razavi,Huayu Tian,Andrés D. Román-Ospino,James V. Scicolone,Gerardo Callegari,Atul Dubey,Abdollah Koolivand,Scott M. Krull,Thomas O’Connor,Fernando J. Muzzio,Marianthi Ierapetritou
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:657: 124133-124133
标识
DOI:10.1016/j.ijpharm.2024.124133
摘要

Residence time distribution (RTD) method has been widely used in the pharmaceutical manufacturing for understanding powder dynamics within unit operations and continuous integrated manufacturing lines. The dynamics thus captured is then used to develop predictive models for unit operations and important RTD-based applications ensuring product quality assurance. Despite thorough efforts in tracer selection, data acquisition, and calibration model development to obtain tracer concentration profiles for RTD studies, there can exist significant noise in these profiles. This noise can make it challenging to identify the underlying signal and get a representative RTD of the system under study. Such concerns have previously indicated the importance of noise handling for RTD measurements in literature. However, the literature does not provide sufficient information on noise handling or data treatment strategies for RTD studies. To this end, we investigate the impact of varying levels of noise using different tracers on measurement of RTD profile and its applications. We quantify the impact of different denoising methods (time and frequency averaging methods). Through this investigation, we see that Savitsky Golay filtering turns out to a good method for denoising RTD profiles despite varying noise levels. The investigation is performed such that the key features of the RTD profile (which are important for RTD based applications) are preserved. Subsequently, we also investigate the impact of denoising on RTD-based applications such as out-of-specification (OOS) analysis and RTD modeling. The results show that the degree of noise levels considered in this work do not significantly impact the RTD-based applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxl完成签到,获得积分10
6秒前
高高的书雁完成签到,获得积分10
10秒前
JiaoJiao发布了新的文献求助10
25秒前
AprilLeung完成签到 ,获得积分10
26秒前
可爱的函函应助叙温雨采纳,获得10
41秒前
51秒前
kklkimo完成签到,获得积分10
51秒前
55秒前
忘忧Aquarius完成签到,获得积分10
58秒前
所所应助温婉的人雄采纳,获得10
1分钟前
1分钟前
Yrawn完成签到 ,获得积分10
1分钟前
叙温雨发布了新的文献求助10
1分钟前
爆米花应助想游泳的鹰采纳,获得10
1分钟前
1分钟前
CipherSage应助想游泳的鹰采纳,获得10
1分钟前
taku完成签到 ,获得积分10
1分钟前
SciGPT应助欣欣采纳,获得10
1分钟前
1分钟前
1分钟前
Shonso发布了新的文献求助10
1分钟前
Jasper应助王险达采纳,获得10
1分钟前
欣欣发布了新的文献求助10
1分钟前
JiaoJiao完成签到,获得积分10
1分钟前
1分钟前
王险达发布了新的文献求助10
2分钟前
FLY完成签到,获得积分10
2分钟前
上官若男应助叙温雨采纳,获得10
2分钟前
雾见春完成签到 ,获得积分10
2分钟前
辛勤的刺猬完成签到 ,获得积分10
2分钟前
2分钟前
完美梨愁完成签到 ,获得积分10
2分钟前
3分钟前
叙温雨发布了新的文献求助10
3分钟前
研友_ngKyqn完成签到,获得积分10
3分钟前
叙温雨发布了新的文献求助10
3分钟前
李健应助想游泳的鹰采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291867
求助须知:如何正确求助?哪些是违规求助? 4442682
关于积分的说明 13830297
捐赠科研通 4325896
什么是DOI,文献DOI怎么找? 2374531
邀请新用户注册赠送积分活动 1369826
关于科研通互助平台的介绍 1334148