A short-term load forecasting method for integrated community energy system based on STGCN

期限(时间) 能源系统 能量(信号处理) 计算机科学 电力系统 运筹学 可靠性工程 工程类 统计 功率(物理) 数学 量子力学 物理
作者
Jie Cao,Chaoqiang Liu,Chin‐Ling Chen,Nan Qu,Xi Yang,Yunchang Dong,Rongqiang Feng
出处
期刊:Electric Power Systems Research [Elsevier BV]
卷期号:232: 110265-110265
标识
DOI:10.1016/j.epsr.2024.110265
摘要

Accurate integrated energy load forecasting is a crucial prerequisite for energy scheduling and strategy formulation in integrated community energy systems. However, the complex interrelationships among multiple loads within the integrated community energy system often hinder the improvement of load forecasting accuracy. To address the issue of high volatility in forecasting caused by the deep coupling of load relationships, a short-term load forecasting method for integrated community energy systems based on Spatio-Temporal Graph Convolutional Neural Network (STGCN) is proposed. Firstly, an integrated energy node clustering method is proposed, considering load fluctuation characteristics to address the error superposition problem caused by an excessive number of load nodes. Similar load nodes are gathered to reduce random errors in cooling and heating loads. Secondly, we design a dynamic adjacency matrix construction method based on load bias correlation to address situations where multiple load correlations influence each other. Bias correlation is utilized for the dynamic update of the matrix, ensuring accurate load correlations. Furthermore, we construct an STGCN-based integrated energy load forecasting model to mitigate short-term load forecasting fluctuations and identify different periodic patterns for distinct loads. The model incorporates multi-scale convolution kernels to capture integrated energy local features, enhancing feature representation and improving load forecasting accuracy. The proposed method is tested and verified using a real integrated community energy system dataset, showing higher prediction accuracy. Specifically, when compared to the current mainstream MTL-LSTM model, the proposed method predicts an 18.1 % increase in the MAPE index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菅完成签到,获得积分10
刚刚
刚刚
1秒前
liningyao发布了新的文献求助10
1秒前
erlangenbio完成签到,获得积分10
2秒前
3秒前
赵慧发布了新的文献求助40
4秒前
鬼见愁应助Chelsy采纳,获得10
5秒前
透心凉1987完成签到,获得积分10
5秒前
果果发布了新的文献求助10
6秒前
siyuwang1234发布了新的文献求助10
7秒前
yechengjie完成签到,获得积分10
7秒前
TTTHANKS完成签到 ,获得积分10
8秒前
Owen应助菠萝采纳,获得10
9秒前
孙燕应助caihong1采纳,获得10
9秒前
g123发布了新的文献求助10
9秒前
英姑应助Kami采纳,获得10
9秒前
jennynnny发布了新的文献求助10
10秒前
12秒前
雨碎寒江发布了新的文献求助10
12秒前
12秒前
科研通AI5应助aaiirrii采纳,获得10
13秒前
大脸猫发布了新的文献求助10
14秒前
liningyao完成签到,获得积分20
15秒前
jennynnny完成签到,获得积分10
16秒前
LJJ完成签到,获得积分10
17秒前
17秒前
嘻嘻嘻发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
GSD发布了新的文献求助10
20秒前
奋斗惮发布了新的文献求助10
20秒前
谢小盟发布了新的文献求助200
20秒前
V-aliang完成签到,获得积分10
20秒前
燕儿完成签到,获得积分0
21秒前
东邪西毒加任我行完成签到,获得积分10
21秒前
顾诺发布了新的文献求助10
21秒前
丘比特应助GUOLINWEI采纳,获得10
22秒前
上官若男应助哦哦采纳,获得10
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4083255
求助须知:如何正确求助?哪些是违规求助? 3622551
关于积分的说明 11491987
捐赠科研通 3337291
什么是DOI,文献DOI怎么找? 1834598
邀请新用户注册赠送积分活动 903487
科研通“疑难数据库(出版商)”最低求助积分说明 821609