Unsupervised Domain Adaptation for Remote Sensing Image Semantic Segmentation Using Region and Category Adaptive Domain Discriminator

鉴别器 计算机科学 分割 人工智能 领域(数学分析) 模式识别(心理学) 集合(抽象数据类型) 图像(数学) 图像分割 地形 域适应 计算机视觉 地理 地图学 数学 分类器(UML) 数学分析 探测器 电信 程序设计语言
作者
Xiaoshu Chen,Shaoming Pan,Yanwen Chong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:33
标识
DOI:10.1109/tgrs.2022.3200246
摘要

By reason of factors such as terrains, weather conditions, sensor imaging methods and cultural and economic development, there is a large shift between the remote sensing imagery collected from different geographic locations and different sensors, which makes the state-of-the-art semantic segmentation models trained on source domain (a image set gathered from specific geographic locations and sensors) difficult to generalize to target domain (another image set collected from other geographic locations and sensors). Currently, unsupervised domain adaptation using adversarial training whose purpose is to align the marginal distribution in the output space between source and target domain, is the most explored and practical approach to address this issue. However, this global alignment approach does not take into account diversities of different regions in a specific image nor the category-level distribution, which leads to the consequence that some regions and categories which are already well aligned between the source and target domain may be incorrectly remapped. Therefore, we propose a region and category adaptive domain discriminator, aiming to emphasize the differences in regions and categories during the process of alignment. Specifically, on the one hand, we propose an entropy-based regional attention module in domain discriminator to emphasize the importance of difficult-to-align regions. On the other hand, we propose a class-clear module to update only the distribution of existing categories in one iteration without affecting all categories. Finally, a lot of experiments are introduced to indicate that the proposed method can obtain better results when compared with other state-of-the-art unsupervised domain adaptation methods using adversarial training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
紧张的如南完成签到,获得积分10
刚刚
踏实的翠绿完成签到,获得积分10
1秒前
勤奋帅帅完成签到,获得积分10
1秒前
羽翼应助三笠采纳,获得10
1秒前
眼睛大抽屉完成签到,获得积分10
1秒前
Lucas应助大饼半斤采纳,获得10
1秒前
WSGQT完成签到,获得积分10
1秒前
2秒前
2秒前
2025alex完成签到,获得积分10
2秒前
魔幻的代芹应助xiuwenli采纳,获得10
3秒前
3秒前
3秒前
3秒前
焦糖完成签到,获得积分10
3秒前
Labubuz发布了新的文献求助10
4秒前
繁荣的思烟完成签到,获得积分10
4秒前
凡凡发布了新的文献求助10
4秒前
5秒前
LjXiong完成签到,获得积分10
5秒前
Yangaaa发布了新的文献求助10
5秒前
炸鸡柳完成签到,获得积分20
6秒前
鹿厉完成签到,获得积分20
7秒前
7秒前
7秒前
奋斗蚂蚁发布了新的文献求助10
8秒前
zzzyc发布了新的文献求助10
8秒前
8秒前
阿刁发布了新的文献求助10
8秒前
9秒前
zyn给无辜的酸奶的求助进行了留言
9秒前
在水一方应助失眠呆呆鱼采纳,获得20
9秒前
LIFE2020发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
周医生发布了新的文献求助10
11秒前
古柒柒完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4474576
求助须知:如何正确求助?哪些是违规求助? 3933218
关于积分的说明 12203349
捐赠科研通 3587823
什么是DOI,文献DOI怎么找? 1972495
邀请新用户注册赠送积分活动 1010231
科研通“疑难数据库(出版商)”最低求助积分说明 903786