Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity

计算机科学 人工智能 图像融合 计算机视觉 杠杆(统计) 特征(语言学) 融合 分割 图像(数学) 模式识别(心理学) 语言学 哲学
作者
Linfeng Tang,Hao Zhang,Han Xu,Jiayi Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:99: 101870-101870 被引量:154
标识
DOI:10.1016/j.inffus.2023.101870
摘要

Image fusion aims to integrate complementary characteristics of source images into a single fused image that better serves human visual observation and machine vision perception. However, most existing image fusion algorithms primarily focus on improving the visual appeal of fused images. Although there are some semantic-driven methods that consider semantic requirements of downstream applications, none of them have demonstrated the potential of image-level fusion compared to feature-level fusion, which fulfills high-level vision tasks directly on multi-modal features rather than on a fused image. To overcome these limitations, this paper presents a practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity constraints, termed PSFusion. First of all, the sparse semantic perception branch extracts sufficient semantic features, which are then progressively integrated into the fusion network using the semantic injection module to fulfill the semantic requirements of high-level vision tasks. The scene fidelity path within the scene restoration branch is devised to ensure that the fusion features contain complete information for reconstructing the source images. Additionally, the contrast mask and salient target mask are employed to construct the fusion loss to maintain impressive visual effects of fusion results. In particular, we provide quantitative and qualitative analyses to demonstrate the potential of image-level fusion compared to feature-level fusion for high-level vision tasks. With the rapid advancement of large-scale models, image-level fusion can expeditiously leverage the advantages of multi-modal data and state-of-the-art (SOTA) unimodal segmentation to achieve superior performance. Furthermore, extensive comparative experiments demonstrate the superiority of our PSFusion over SOTA image-level fusion alternatives in terms of visual appeal and high-level semantics. Even under harsh circumstances, our method offers satisfactory fusion results to serve subsequent high-level vision applications. The source code is available at https://github.com/Linfeng-Tang/PSFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助daisy采纳,获得10
1秒前
2秒前
Cici发布了新的文献求助10
2秒前
啵啵啵波发布了新的文献求助10
2秒前
所所应助bzy采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
Kyone完成签到,获得积分10
4秒前
6秒前
6秒前
英俊的铭应助噗噗xie采纳,获得10
6秒前
Qiangzai发布了新的文献求助10
7秒前
zhq发布了新的文献求助10
7秒前
8秒前
白许四十完成签到,获得积分10
8秒前
9秒前
镓氧锌钇铀应助guo采纳,获得10
10秒前
10秒前
11秒前
田様应助啵啵啵波采纳,获得10
11秒前
liu920204完成签到,获得积分10
11秒前
白马非马发布了新的文献求助10
11秒前
12秒前
完美世界应助Cici采纳,获得10
13秒前
14秒前
活泼舞蹈发布了新的文献求助10
15秒前
16秒前
可爱的函函应助庞初南采纳,获得10
18秒前
shanshan完成签到,获得积分20
18秒前
hzhang0807发布了新的文献求助10
18秒前
桑叶发布了新的文献求助10
18秒前
镓氧锌钇铀应助transition采纳,获得10
20秒前
20秒前
20秒前
21秒前
21秒前
22秒前
结实的慕凝完成签到,获得积分10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241256
求助须知:如何正确求助?哪些是违规求助? 3774887
关于积分的说明 11854495
捐赠科研通 3429828
什么是DOI,文献DOI怎么找? 1882599
邀请新用户注册赠送积分活动 934467
科研通“疑难数据库(出版商)”最低求助积分说明 841016