Comparison of methods for finding saddle points without knowledge of the final states

鞍点 自由度(物理和化学) 马鞍 特征向量 势能面 功能(生物学) Lanczos重采样 数学 成对比较 过渡态理论 物理 统计物理学 数学分析 量子力学 几何学 数学优化 从头算 统计 动力学 反应速率常数 生物 进化生物学
作者
R. A. Olsen,Geert–Jan Kroes,Graeme Henkelman,Andri Arnaldsson,Hannes Jónsson
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:121 (20): 9776-9792 被引量:550
标识
DOI:10.1063/1.1809574
摘要

Within the harmonic approximation to transition state theory, the biggest challenge involved in finding the mechanism or rate of transitions is the location of the relevant saddle points on the multidimensional potential energy surface. The saddle point search is particularly challenging when the final state of the transition is not specified. In this article we report on a comparison of several methods for locating saddle points under these conditions and compare, in particular, the well-established rational function optimization (RFO) methods using either exact or approximate Hessians with the more recently proposed minimum mode following methods where only the minimum eigenvalue mode is found, either by the dimer or the Lanczos method. A test problem involving transitions in a seven-atom Pt island on a Pt(111) surface using a simple Morse pairwise potential function is used and the number of degrees of freedom varied by varying the number of movable atoms. In the full system, 175 atoms can move so 525 degrees of freedom need to be optimized to find the saddle points. For testing purposes, we have also restricted the number of movable atoms to 7 and 1. Our results indicate that if attempting to make a map of all relevant saddle points for a large system (as would be necessary when simulating the long time scale evolution of a thermal system) the minimum mode following methods are preferred. The minimum mode following methods are also more efficient when searching for the lowest saddle points in a large system, and if the force can be obtained cheaply. However, if only the lowest saddle points are sought and the calculation of the force is expensive but a good approximation for the Hessian at the starting position of the search can be obtained at low cost, then the RFO approaches employing an approximate Hessian represent the preferred choice. For small and medium sized systems where the force is expensive to calculate, the RFO approaches employing an approximate Hessian is also the more efficient, but when the force and Hessian can be obtained cheaply and only the lowest saddle points are sought the RFO approach using an exact Hessian is the better choice. These conclusions have been reached based on a comparison of the total computational effort needed to find the saddle points and the number of saddle points found for each of the methods. The RFO methods do not perform very well with respect to the latter aspect, but starting the searches further away from the initial minimum or using the hybrid RFO version presented here improves this behavior considerably in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁子骞完成签到,获得积分10
刚刚
zzz发布了新的文献求助10
刚刚
efjbvb发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
脑洞疼应助默默懿轩采纳,获得10
2秒前
小羊羊完成签到,获得积分10
3秒前
谦让的傲芙完成签到,获得积分10
3秒前
3秒前
3秒前
正直的念梦完成签到,获得积分10
4秒前
4秒前
一往无前发布了新的文献求助10
4秒前
Ellie发布了新的文献求助10
4秒前
Sky36001发布了新的文献求助40
5秒前
黑米粥发布了新的文献求助10
5秒前
沐风完成签到,获得积分20
6秒前
胖123完成签到,获得积分20
6秒前
超级凡旋完成签到 ,获得积分10
6秒前
B站萧亚轩发布了新的文献求助10
7秒前
7秒前
孙傲发布了新的文献求助10
8秒前
8秒前
lili发布了新的文献求助30
9秒前
科研通AI6应助slayersqin采纳,获得10
9秒前
10秒前
10秒前
开心谷秋完成签到,获得积分10
10秒前
mz完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
ding应助等待的慕梅采纳,获得10
13秒前
unaive完成签到,获得积分10
13秒前
14秒前
Luyt发布了新的文献求助10
14秒前
15秒前
胖123发布了新的文献求助10
15秒前
16秒前
dbq发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367