Wnt信号通路
DNA损伤
癌症研究
纤维化
组蛋白脱乙酰基酶
生物
曲古抑菌素A
组蛋白脱乙酰酶抑制剂
分子生物学
细胞生物学
组蛋白
免疫学
信号转导
医学
DNA
内科学
遗传学
作者
Silvia Svegliati,Giusi Marrone,Antonio Pezone,Tatiana Spadoni,Antonella Grieco,Gianluca Moroncini,Domenico Grieco,Maria Vinciguerra,Savina Agnese,Astrid Jüngel,Oliver Distler,Anna Maria Musti,Armando Gabrielli,Enrico V. Avvedimento
出处
期刊:Science Signaling
[American Association for the Advancement of Science]
日期:2014-09-02
卷期号:7 (341)
被引量:91
标识
DOI:10.1126/scisignal.2004592
摘要
Systemic sclerosis (SSc) is an autoimmune disease characterized by extensive visceral organ and skin fibrosis. SSc patients have increased production of autoreactive antibodies and Wnt signaling activity. We found that expression of the gene encoding Wnt inhibitor factor 1 (WIF-1) was decreased in fibroblasts from SSc patient biopsies. WIF-1 deficiency in SSc patient cells correlated with increased abundance of the Wnt effector β-catenin and the production of collagen. Knocking down WIF-1 in normal fibroblasts increased Wnt signaling and collagen production. WIF-1 loss and DNA damage were induced in normal fibroblasts by either SSc patient immunoglobulins or oxidative DNA-damaging agents, such as ultraviolet light, hydrogen peroxide, or bleomycin. The DNA damage checkpoint kinase ataxia telangiectasia mutated (ATM) mediated WIF-1 silencing through the phosphorylation of the transcription factor c-Jun, which in turn activated the expression of the gene encoding activating transcription factor 3 (ATF3). ATF3 and c-Jun were recruited together with histone deacetylase 3 (HDAC3) to the WIF-1 promoter and inhibited WIF-1 expression. Preventing the accumulation of reactive oxygen species or inhibiting the activation of ATM, c-Jun, or HDACs restored WIF-1 expression in cultured SSc patient cells. Trichostatin A, an HDAC inhibitor, prevented WIF-1 loss, β-catenin induction, and collagen accumulation in an experimental fibrosis model. Our findings suggest that oxidative DNA damage induced by SSc autoreactive antibodies enables Wnt activation that contributes to fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI