Improving Structure-Based Virtual Screening with Ensemble Docking and Machine Learning

对接(动物) 虚拟筛选 蛋白质-配体对接 计算机科学 集成学习 人工智能 机器学习 计算生物学 药物发现 生物信息学 生物 医学 护理部
作者
Joel Ricci-López,Sergio A. Águila,Michael K. Gilson,Carlos A. Brizuela
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:61 (11): 5362-5376 被引量:38
标识
DOI:10.1021/acs.jcim.1c00511
摘要

One of the main challenges of structure-based virtual screening (SBVS) is the incorporation of the receptor's flexibility, as its explicit representation in every docking run implies a high computational cost. Therefore, a common alternative to include the receptor's flexibility is the approach known as ensemble docking. Ensemble docking consists of using a set of receptor conformations and performing the docking assays over each of them. However, there is still no agreement on how to combine the ensemble docking results to obtain the final ligand ranking. A common choice is to use consensus strategies to aggregate the ensemble docking scores, but these strategies exhibit slight improvement regarding the single-structure approach. Here, we claim that using machine learning (ML) methodologies over the ensemble docking results could improve the predictive power of SBVS. To test this hypothesis, four proteins were selected as study cases: CDK2, FXa, EGFR, and HSP90. Protein conformational ensembles were built from crystallographic structures, whereas the evaluated compound library comprised up to three benchmarking data sets (DUD, DEKOIS 2.0, and CSAR-2012) and cocrystallized molecules. Ensemble docking results were processed through 30 repetitions of 4-fold cross-validation to train and validate two ML classifiers: logistic regression and gradient boosting trees. Our results indicate that the ML classifiers significantly outperform traditional consensus strategies and even the best performance case achieved with single-structure docking. We provide statistical evidence that supports the effectiveness of ML to improve the ensemble docking performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
penzer发布了新的文献求助10
8秒前
华北走地鸡完成签到,获得积分10
9秒前
14秒前
SPUwangshunfeng完成签到,获得积分10
16秒前
蒋时晏应助科研通管家采纳,获得30
16秒前
蒋时晏应助科研通管家采纳,获得30
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
17秒前
妮儿完成签到 ,获得积分10
17秒前
大师现在发布了新的文献求助10
21秒前
bubble完成签到 ,获得积分10
22秒前
Lucas应助sujinyu采纳,获得10
23秒前
赘婿应助shine采纳,获得10
24秒前
raziel发布了新的文献求助10
30秒前
33秒前
三三完成签到 ,获得积分10
34秒前
37秒前
条条123完成签到 ,获得积分10
38秒前
星辰大海应助你听得到采纳,获得30
38秒前
今夕何夕完成签到 ,获得积分10
40秒前
shine发布了新的文献求助10
40秒前
天天完成签到,获得积分10
41秒前
43秒前
NexusExplorer应助电麻木采纳,获得10
47秒前
搜集达人应助海绵宝宝采纳,获得10
47秒前
凯蒂完成签到,获得积分10
48秒前
52秒前
54秒前
57秒前
幽默的凡完成签到 ,获得积分10
58秒前
电麻木发布了新的文献求助10
58秒前
sujinyu发布了新的文献求助10
58秒前
1分钟前
1分钟前
1分钟前
你好完成签到 ,获得积分10
1分钟前
Kiki发布了新的文献求助10
1分钟前
星星完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776406
求助须知:如何正确求助?哪些是违规求助? 3321809
关于积分的说明 10207935
捐赠科研通 3037143
什么是DOI,文献DOI怎么找? 1666560
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872