材料科学
光电探测器
光电子学
量子效率
响应度
铟
异质结
制作
兴奋剂
纳米技术
石墨烯
肖特基势垒
表面改性
医学
二极管
工程类
病理
化学工程
替代医学
作者
Ye Wang,Hanlin Wang,Sai Manoj Gali,Nicholas Turetta,Yifan Yao,Can Wang,Yu‐Sheng Chen,David Beljonne,Paolo Samorı́
标识
DOI:10.1002/adfm.202103353
摘要
Abstract Two‐dimensional (2D) photodetecting materials have shown superior performances over traditional materials (e.g., silicon, perylenes), which demonstrate low responsivity (R) ( < 1 AW −1 ), external quantum efficiency (EQE) ( < 100%), and limited detection bandwidth. Recently, 2D indium selenide (InSe) emerged as high‐performance active material in field‐effect transistors and photodetectors, whose fabrication required expensive and complex techniques. Here, it is shown for the first time how molecular functionalization with a common surfactant molecule (didodecyldimethylammonium bromide) (DDAB) represents a powerful strategy to boost the (opto)electronic performances of InSe yielding major performance enhancements in phototransistors, Schottky junctions, and van der Waals heterostructures via a lithography‐compatible fabrication route. The functionalization can controllably dope and heal vacancies in InSe, resulting in ultrahigh field‐effect mobility (10 3 cm 2 V −1 s −1 ) and photoresponsivity (10 6 A W −1 ), breaking the record of non‐graphene‐contacted 2D photodetectors. The strategy towards the molecular doping of 2D photodetecting materials is efficient, practical, up‐scalable, and operable with ultra‐low power input, ultimately paving the way to next‐generation 2D opto‐electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI