KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation.

作者
Jeya Maria Jose Valanarasu,Vishwanath A. Sindagi,Ilker Hacihaliloglu,Vishal M. Patel
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2021.3130469
摘要

Most methods for medical image segmentation use U-Net or its variants as they have been successful in most of the applications. After a detailed analysis of these traditional encoder-decoder based approaches, we observed that they perform poorly in detecting smaller structures and are unable to segment boundary regions precisely. This issue can be attributed to the increase in receptive field size as we go deeper into the encoder. The extra focus on learning high level features causes U-Net based approaches to learn less information about low-level features which are crucial for detecting small structures. To overcome this issue, we propose using an overcomplete convolutional architecture where we project the input image into a higher dimension such that we constrain the receptive field from increasing in the deep layers of the network. We design a new architecture for image segmentation- KiU-Net which has two branches: (1) an overcomplete convolutional network Kite-Net which learns to capture fine details and accurate edges of the input, and (2) U-Net which learns high level features. Furthermore, we also propose KiU-Net 3D which is a 3D convolutional architecture for volumetric segmentation. We perform a detailed study of KiU-Net by performing experiments on five different datasets covering various image modalities. We achieve a good performance with an additional benefit of fewer parameters and faster convergence. We also demonstrate that the extensions of KiU-Net based on residual blocks and dense blocks result in further performance improvements. Code: https://github.com/jeya-maria-jose/KiU-Net-pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大宝完成签到 ,获得积分10
1秒前
fzh发布了新的文献求助10
6秒前
Niniiii应助哥哥采纳,获得10
14秒前
dong完成签到 ,获得积分10
18秒前
钟声完成签到,获得积分0
19秒前
byron完成签到 ,获得积分10
20秒前
天天快乐应助留下就好采纳,获得10
20秒前
24秒前
laohu完成签到,获得积分10
27秒前
鲁路修完成签到,获得积分10
28秒前
哥哥完成签到,获得积分10
30秒前
勤恳的雪卉完成签到,获得积分0
33秒前
鲤鱼越越完成签到 ,获得积分10
38秒前
月亮与六便士完成签到 ,获得积分10
41秒前
Akim应助科研通管家采纳,获得10
44秒前
Tao2023完成签到,获得积分10
45秒前
小学生完成签到 ,获得积分10
46秒前
光亮若翠完成签到,获得积分10
47秒前
naomi完成签到 ,获得积分10
56秒前
芝诺的乌龟完成签到 ,获得积分0
57秒前
李振博完成签到 ,获得积分10
59秒前
贰鸟完成签到,获得积分0
59秒前
HH完成签到 ,获得积分10
1分钟前
悦耳冬萱完成签到 ,获得积分10
1分钟前
AJ完成签到 ,获得积分10
1分钟前
彦希完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
卓矢完成签到 ,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
苏子轩完成签到 ,获得积分10
1分钟前
CLTTT完成签到,获得积分10
1分钟前
mengmenglv完成签到 ,获得积分0
1分钟前
天才小能喵完成签到 ,获得积分0
1分钟前
小康学弟完成签到 ,获得积分10
1分钟前
1分钟前
王春琰完成签到 ,获得积分10
2分钟前
好好学习完成签到,获得积分10
2分钟前
cgl155410完成签到 ,获得积分10
2分钟前
2分钟前
王佳豪完成签到,获得积分10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402429
捐赠科研通 3077212
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743