Temporal-Channel Transformer for 3D Lidar-Based Video Object Detection for Autonomous Driving

计算机科学 编码器 计算机视觉 人工智能 解码 目标检测 变压器 解码方法 模式识别(心理学) 算法 工程类 操作系统 电气工程 电压
作者
Zhenxun Yuan,Xiao Song,Lei Bai,Zhe Wang,Wanli Ouyang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (4): 2068-2078 被引量:119
标识
DOI:10.1109/tcsvt.2021.3082763
摘要

The strong demand of autonomous driving in the industry has led to vigorous interest in 3D object detection and resulted in many excellent 3D object detection algorithms. However, the vast majority of algorithms only model single-frame data, ignoring the temporal clue in video sequence. In this work, we propose a new transformer, called Temporal-Channel Transformer (TCTR), to model the temporal-channel domain and spatial-wise relationships for video object detecting from Lidar data. As the special design of this transformer, the information encoded in the encoder is different from that in the decoder. The encoder encodes temporal-channel information of multiple frames while the decoder decodes the spatial-wise information for the current frame in a voxel-wise manner. Specifically, the temporal-channel encoder of the transformer is designed to encode the information of different channels and frames by utilizing the correlation among features from different channels and frames. On the other hand, the spatial decoder of the transformer decodes the information for each location of the current frame. Before conducting the object detection with detection head, a gate mechanism is further deployed for re-calibrating the features of current frame, which filters out the object-irrelevant information by repetitively refining the representation of target frame along with the up-sampling process. Experimental results reveal that TCTR achieves the state-of-the-art performance in grid voxel-based 3D object detection on the nuScenes benchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助暴躁的百褶裙采纳,获得10
刚刚
唐晓秦完成签到,获得积分10
刚刚
英俊牛排完成签到,获得积分10
1秒前
暴富完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
知性的紫寒完成签到 ,获得积分20
1秒前
2秒前
CodeCraft应助李健春采纳,获得10
3秒前
若兰发布了新的文献求助10
3秒前
orixero应助jiabaoyu采纳,获得10
3秒前
lorieeee完成签到,获得积分10
4秒前
谭淇文完成签到,获得积分10
4秒前
wwz完成签到 ,获得积分10
4秒前
雅琪完成签到,获得积分20
5秒前
Vinca发布了新的文献求助10
5秒前
快乐难敌发布了新的文献求助10
5秒前
酷波er应助chaxie采纳,获得10
6秒前
yefeng发布了新的文献求助20
7秒前
谭淇文发布了新的文献求助10
7秒前
科研通AI5应助空山新雨采纳,获得10
9秒前
勤恳凤完成签到,获得积分10
9秒前
10秒前
风中夜天完成签到,获得积分10
10秒前
Ava应助111采纳,获得10
11秒前
14秒前
内向小熊猫完成签到,获得积分10
14秒前
猴子好坏发布了新的文献求助10
14秒前
慕青应助leena采纳,获得10
14秒前
zz完成签到,获得积分10
16秒前
17秒前
111完成签到,获得积分10
17秒前
17秒前
明亮寻绿完成签到,获得积分10
18秒前
orixero应助Freya采纳,获得30
18秒前
18秒前
111完成签到,获得积分10
18秒前
Owen应助wzc采纳,获得10
19秒前
19秒前
19秒前
Owen应助无奈满天采纳,获得10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818341
求助须知:如何正确求助?哪些是违规求助? 3361488
关于积分的说明 10413002
捐赠科研通 3079720
什么是DOI,文献DOI怎么找? 1692197
邀请新用户注册赠送积分活动 814524
科研通“疑难数据库(出版商)”最低求助积分说明 768189