Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices

多光谱图像 天蓬 环境科学 增强植被指数 植被(病理学) 遥感 数学 人工智能 土壤科学 叶面积指数 计算机科学 地质学 农学 归一化差异植被指数 地理 植被指数 病理 生物 考古 医学
作者
Yongcai Zhou,Congcong Lao,Yalong Yang,Zhitao Zhang,Haiying Chen,Yinwen Chen,Junying Chen,Jifeng Ning,Ning Yang
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:256: 107076-107076 被引量:94
标识
DOI:10.1016/j.agwat.2021.107076
摘要

Timely and accurate detection of crop water stress is vital for precision irrigation. Whether the accuracy of the prevailing diagnosis of crop water stress using vegetation indices (VIs) and spectral reflectance can be improved still remains to be investigated. The crop surface characteristics such as grayscale or color vary under different water stress, so in this study one more variable, image texture, was utilized together to diagnose water stress. For this end, the canopy image of winter wheat in bloom was obtained by unmanned aerial vehicle (UAV) equipped with multispectral sensor, and the effect of soil background was eliminated using vegetation index threshold method. On this basis, Grey level co-occurrence matrix (GLCM) was used to calculate the mean (MEA), variance (VAR), homogeneity (HOM), contrast (CON), dissimilarity (DIS), entropy (ENT), second moment (SEC) and correlation (COR) of the image texture under different spatial resolutions (0.008 m, 0.01 m, 0.02 m, 0.05 m, 0.1 m and 0.2 m). Next, the canopy vegetation indices were obtained by mathematical transformation of canopy reflectance, and then sensitive image texture and vegetation indices by full subset regression method. Finally, Cubist, BPNN (Back Propagation Neural Network) and ELM (Extreme Learning Machine) methods were adopted to build the estimation models of the stomatal conductance (Gs) of winter wheat (between the sensitive image texture and Gs, and between vegetation index and Gs), and the water stress map was plotted based on the optimal Gs estimation model. The result showed: (i) the image texture obtained from the high-resolution multispectral image had a high correlation with Gs, and the image texture (VAR, HOM, CON, DIS, ENT and SEC) at 550 nm had the most significant correlation; (ii) the higher the ground resolution, the higher the correlation between the Gs and the image texture, the vegetation indices, respectively. The image texture with a ground resolution of 0.008 m combined with VIs and Gs had the highest correlation, and combining image texture and vegetation index can significantly improve the estimation accuracy of winter wheat Gs; (iii) Among the three estimation models, the BPNN model constructed by combining the image texture and VIs (MEA, VAR, ENT, DWSI and EXG) had the best estimation performance (Calibration:Rc2 = 0.899, RMSEc = 0.01, MAEc = 0.006; Validation:Rc2 = 0.834, RMSEv =;0.018, MAEv = 0.014), and an accurate estimation could even be achieved at a lower Gs value. Compared with the BPNN model solely based on VIs or image texture, the Rc2 of the BPNN model based on the combined variables increased by 24% and 22.48%, respectively. Therefore, combining UAV multispectral image texture and VIs to estimate Gs provides a feasible and accurate method for water stress diagnosis of winter wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
milkmore完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
上官若男应助陌日遗迹采纳,获得10
3秒前
英姑应助淡然善斓采纳,获得10
3秒前
milkmore发布了新的文献求助10
3秒前
3秒前
brayon发布了新的文献求助10
4秒前
瑕灬发布了新的文献求助10
4秒前
kk完成签到,获得积分10
4秒前
lipel完成签到,获得积分10
5秒前
5秒前
赘婿应助zltinger采纳,获得10
5秒前
movoandy发布了新的文献求助30
5秒前
5秒前
传奇3应助76542cu采纳,获得10
5秒前
5秒前
6秒前
小丸煎饼完成签到,获得积分10
6秒前
6秒前
Kikisman发布了新的文献求助10
7秒前
7秒前
7秒前
xilin发布了新的文献求助10
7秒前
111发布了新的文献求助10
8秒前
CK完成签到,获得积分10
8秒前
8秒前
雨泽发布了新的文献求助10
8秒前
恨海情天完成签到,获得积分10
8秒前
东山道友发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助袋袋采纳,获得15
9秒前
vivi猫小咪发布了新的文献求助10
10秒前
打打应助meng采纳,获得10
10秒前
淡定从凝发布了新的文献求助10
11秒前
una完成签到 ,获得积分10
11秒前
12秒前
田磊完成签到,获得积分10
13秒前
万能图书馆应助lh采纳,获得10
13秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5240190
求助须知:如何正确求助?哪些是违规求助? 4407423
关于积分的说明 13718435
捐赠科研通 4276096
什么是DOI,文献DOI怎么找? 2346385
邀请新用户注册赠送积分活动 1343517
关于科研通互助平台的介绍 1301508