Research trends analysis using text mining in construction management: 2000–2020

潜在Dirichlet分配 数据科学 计算机科学 独创性 引用 背景(考古学) 主题模型 敏捷软件开发 文献计量学 引文分析 情报检索 数据挖掘 地理 图书馆学 社会科学 社会学 定性研究 考古 软件工程
作者
Eymen Çağatay Bilge,Hakan Yaman
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
卷期号:29 (8): 3210-3233 被引量:15
标识
DOI:10.1108/ecam-02-2021-0107
摘要

Purpose This study aims to identify the trends that have changed in the field of construction management over the last 20 years. Design/methodology/approach In this study, 3,335 journal articles published in the years 2000–2020 were collected from the Web of Science database in construction management. The authors applied bibliometric analysis first and then detected topics with the latent Dirichlet allocation (LDA) topic detection method. Findings In this context, 20 clusters from cluster analysis were found and the topics were extracted in clusters with the LDA topic detection method. The results show “building information modeling” and “information management” are the most studied subjects, even though they have emerged in the last 15 years “building information modeling,” “information management,” “scheduling and cost optimization,” “lean construction,” “agile approach” and “megaprojects” are the trend topics in the construction management literature. Research limitations/implications This study uses bibliometric analysis. The authors accept that the co-citation and co-authorship relationship in the data is ethical. They accept that honorary authorship, self-citation or honorary citation do not change the pattern of the construction management research domain. Originality/value There has been no study conducted in the last 20 years to examine research trends in construction management. Although bibliometric analysis, systematic literature reviews and text mining methods are used separately as a methodology for extracting research trends, no study has used enhanced bibliometric analysis and the LDA topic detection text mining method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lea发布了新的文献求助30
刚刚
噢锦关注了科研通微信公众号
1秒前
2秒前
2秒前
爆米花应助Serena采纳,获得10
3秒前
w_tiger完成签到 ,获得积分10
5秒前
斯文败类应助LUK_采纳,获得10
6秒前
6秒前
8秒前
美狗王完成签到,获得积分10
8秒前
8秒前
完美世界应助小可爱采纳,获得10
9秒前
9秒前
成就的孤晴完成签到 ,获得积分10
10秒前
刘佳发布了新的文献求助10
10秒前
10秒前
qinzhu完成签到,获得积分10
11秒前
结实星星发布了新的文献求助10
11秒前
12秒前
居中完成签到,获得积分10
13秒前
HJJHJH发布了新的文献求助10
13秒前
13秒前
陶玲完成签到,获得积分10
14秒前
科研通AI5应助江峰采纳,获得10
14秒前
tw0125完成签到 ,获得积分10
14秒前
自觉的醉波完成签到,获得积分10
14秒前
小蟑螂发布了新的文献求助10
15秒前
Meya发布了新的文献求助10
15秒前
15秒前
Serena发布了新的文献求助10
16秒前
18秒前
陶玲发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
专注白安完成签到,获得积分10
20秒前
21秒前
21秒前
LingC发布了新的文献求助30
22秒前
小乖完成签到,获得积分20
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784309
求助须知:如何正确求助?哪些是违规求助? 3329382
关于积分的说明 10242030
捐赠科研通 3044893
什么是DOI,文献DOI怎么找? 1671397
邀请新用户注册赠送积分活动 800254
科研通“疑难数据库(出版商)”最低求助积分说明 759298