微型多孔材料
乙炔
吸附
格式化
从头算
选择性
化学
金属有机骨架
计算化学
物理化学
热力学
无机化学
有机化学
物理
催化作用
作者
Michael Fischer,Frank Hoffmann,Michael Fröba
出处
期刊:ChemPhysChem
[Wiley]
日期:2010-06-10
卷期号:11 (10): 2220-2229
被引量:130
标识
DOI:10.1002/cphc.201000126
摘要
Force-field based grand-canonical Monte Carlo simulations are used to investigate the acetylene and carbon dioxide uptake capacity, as well as the C(2)H(2)/CO(2) adsorption selectivity of three novel microporous materials: Magnesium formate, Cu(3)(btc)(2), and cucurbit[6]uril. Because no comparable computational studies of acetylene adsorption have been reported so far, the study focuses on systems for which experimental data are available to permit a thorough validation of the simulation results. The results for magnesium formate are in excellent agreement with experiment. The simulation predicts a high selectivity for acetylene over CO(2), which can be understood from a detailed analysis of the structural features that determine the affinity of Mg-formate towards C(2)H(2). For Cu(3)(btc)(2), preliminary calculations reveal the necessity to include the interaction of the sorbate molecules with the unsaturated metal sites, which is done by means of a parameter adjustment based on ab-initio calculations. In spite of the high C(2)H(2) storage capacity, the C(2)H(2)/CO(2) selectivity of this material is very modest. The simulation results for the porous organic crystal cucurbit[6]uril show that the adsorption characteristics that have been observed experimentally, particularly the very high isosteric heat of adsorption, cannot be understood when an ideal structure is assumed. It is postulated that structural imperfections play a key role in determining the C(2)H(2) adsorption behavior of this material, and this proposition is supported by additional calculations.
科研通智能强力驱动
Strongly Powered by AbleSci AI