材料科学
光学
激光器
折射率
吸收(声学)
浸没式光刻
双折射
衰减系数
平版印刷术
光电子学
抵抗
复合材料
物理
图层(电子)
作者
Dörte Schönfeld,Ursula Klett,Christian Mühlig,Stephan Thomas
摘要
The ongoing development in microlithography towards further miniaturization of structures creates a strong demand for lens material with nearly ideal optical properties. Beside the highly demanding requirements on homogeneity and stress induced birefringence (SIB), low absorption is a key factor. Even a small absorption is associated with a temperature increase and results in thermally induced local variations of refractive index and SIB. This could affect the achievable resolution of the lithographic process. The total absorption of the material is composed of initial absorption and of absorption induced during irradiation. Thus, the optimization of both improves the lifetime of the material. In principal, it is possible to measure transmission and scattering with a suitable spectrometer assembly and calculate absorption from them. However, owing to the influence of sample surfaces and errors of measurement, these methods usually do not provide satisfactory results for highly light-transmissive fused silica. Therefore, it is most desirable to find a technique that is capable of directly measuring absorption coefficients in the range of (1...10)•10-4 cm-1 (base 10) directly. We report our first results for fused silica achieved with the LID technique. Besides a fused silica grade designed for 193 nm applications, grades with higher absorption at 193 nm were measured to test the LID technique. A special focus was set on the possibility of measuring initial absorption without the influence of degradation effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI