DNA甲基化
DNA
甲基化
2型糖尿病
医学
生物
免疫学
分子生物学
内分泌学
基因
糖尿病
遗传学
基因表达
作者
David Simar,Soetkin Versteyhe,Ida Donkin,Jia Liu,Luke B. Hesson,Vibe Nylander,Anna Fossum,Romain Barrès
标识
DOI:10.1016/j.metabol.2014.05.014
摘要
Obesity is associated with low-grade inflammation and the infiltration of immune cells in insulin-sensitive tissues, leading to metabolic impairment. Epigenetic mechanisms control immune cell lineage determination, function and migration and are implicated in obesity and type 2 diabetes (T2D). The aim of this study was to determine the global DNA methylation profile of immune cells in obese and T2D individuals in a cell type-specific manner.Fourteen obese subjects and 11 age-matched lean subjects, as well as 12 T2D obese subjects and 7 age-matched lean subjects were recruited. Global DNA methylation levels were measured in a cell type-specific manner by flow cytometry. We validated the assay against mass spectrometry measures of the total 5-methylcytosine content in cultured cells treated with the hypomethylation agent decitabine (r=0.97, p<0.001).Global DNA methylation in peripheral blood mononuclear cells, monocytes, lymphocytes or T cells was not altered in obese or T2D subjects. However, analysis of blood fractions from lean, obese, and T2D subjects showed increased methylation levels in B cells from obese and T2D subjects and in natural killer cells from T2D patients. In these cell types, DNA methylation levels were positively correlated with insulin resistance, suggesting an association between DNA methylation changes, immune function and metabolic dysfunction.Both obesity and T2D are associated with an altered epigenetic signature of the immune system in a cell type-specific manner. These changes could contribute to the altered immune functions associated with obesity and insulin resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI