A digital biomarker of diabetes from smartphone-based vascular signals

队列 医学 生物标志物 光容积图 糖尿病 置信区间 2型糖尿病 队列研究 内科学 体质指数 前瞻性队列研究 计算机科学 内分泌学 生物 生物化学 滤波器(信号处理) 计算机视觉
作者
Robert Avram,Jeffrey E. Olgin,Peter Kuhar,J. Weston Hughes,Gregory M. Marcus,Mark J. Pletcher,Kirstin Aschbacher,Geoffrey H. Tison
出处
期刊:Nature Medicine [Springer Nature]
卷期号:26 (10): 1576-1582 被引量:93
标识
DOI:10.1038/s41591-020-1010-5
摘要

The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 20451. The insidious onset of type 2 diabetes delays diagnosis and increases morbidity2. Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the ‘primary cohort’), which we then validated in a separate cohort of 7,806 individuals (the ‘contemporary cohort’) and a cohort of 181 prospectively enrolled individuals from three clinics (the ‘clinic cohort’). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750–0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723–0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c (P ≤ 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes. A deep neural network applied to smartphone-based vascular imaging can detect diabetes, opening new possibilities for non-invasive diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋子涵关注了科研通微信公众号
刚刚
1秒前
1秒前
浮游应助大胆菲音采纳,获得30
1秒前
2秒前
ceploup发布了新的文献求助10
2秒前
裘翠桃发布了新的文献求助10
3秒前
4秒前
5秒前
额123没名发布了新的文献求助10
5秒前
6秒前
微凉发布了新的文献求助10
6秒前
微眠发布了新的文献求助10
6秒前
宋锦秀完成签到,获得积分10
7秒前
天真台灯发布了新的文献求助20
8秒前
wanci应助cbz采纳,获得10
8秒前
lluuoo发布了新的文献求助10
9秒前
ShuangqingYE完成签到,获得积分10
10秒前
Criminology34应助xiu-er采纳,获得10
10秒前
安静完成签到 ,获得积分10
10秒前
11秒前
852应助ww采纳,获得10
11秒前
lkx发布了新的文献求助10
11秒前
传奇3应助junjun采纳,获得10
11秒前
QG完成签到,获得积分10
12秒前
luxia完成签到 ,获得积分10
12秒前
13秒前
醉熏的以蓝完成签到 ,获得积分10
13秒前
wait发布了新的文献求助30
13秒前
Akim应助斯文山菡采纳,获得10
14秒前
15秒前
16秒前
chengmin完成签到 ,获得积分10
17秒前
17秒前
自由夕阳完成签到,获得积分10
17秒前
鳗鱼蛋挞完成签到 ,获得积分10
18秒前
ling发布了新的文献求助10
18秒前
Wendy完成签到,获得积分10
18秒前
19秒前
姜戈发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344292
求助须知:如何正确求助?哪些是违规求助? 4479591
关于积分的说明 13943650
捐赠科研通 4376717
什么是DOI,文献DOI怎么找? 2404883
邀请新用户注册赠送积分活动 1397393
关于科研通互助平台的介绍 1369651