A modeling and experimental study of capacity fade for lithium-ion batteries

淡出 电池(电) 容量损失 锂离子电池 锂(药物) 电解质 泄流深度 充电周期 降级(电信) 电极 材料科学 汽车工程 涓流充电 计算机科学 电气工程 核工程 工程类 化学 功率(物理) 热力学 操作系统 物理 物理化学 内分泌学 医学
作者
Andrew Carnovale,Xianguo Li
出处
期刊:Energy and AI [Elsevier BV]
卷期号:2: 100032-100032 被引量:70
标识
DOI:10.1016/j.egyai.2020.100032
摘要

Lithium-ion batteries are extensively used in electric vehicles, however, their significant degradation over discharge and charge cycles results in severe capacity fade, limiting driving ranges of electric vehicles over time and useful lifetime of batteries. In this study, capacity fade for lithium-ion battery has been investigated through modeling and experiment. A predictive model is developed based on first principles incorporating degradation mechanisms. The mechanisms of degradation considered include solid-electrolyte interface (SEI) growth and active material loss at both negative and positive electrodes. Battery performance including capacity is measured experimentally under discharge and charge cycling with battery operation temperature controlled. It is shown that battery capacity is reduced over battery discharge/charge cycling at a given battery operation temperature, and the model predicted battery performance, including capacity fade, agrees well with the experimental results. As the number of discharge/charge cycles are increased, battery capacity is reduced significantly; battery capacity fade is increased substantially when battery operation temperature is increased, indicating significantly accelerated aging of the battery at elevated operation temperatures and hence the importance of battery thermal management in the control of battery operation temperature for practical applications such as electric vehicles. Battery capacity fade is mainly caused by SEI film growth at the negative electrode, which is the largest contributing factor to the capacity fade, and the active material isolation at the negative electrode, which is the second largest influencing aging factor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
是个熊猫完成签到,获得积分10
1秒前
科目三应助PengM采纳,获得20
2秒前
3秒前
tiantu发布了新的文献求助10
4秒前
喜悦代荷应助阿俊1212采纳,获得10
5秒前
6秒前
jin发布了新的文献求助10
6秒前
7秒前
shutong关注了科研通微信公众号
9秒前
Riddance完成签到,获得积分10
10秒前
懒羊羊发布了新的文献求助10
13秒前
佛冷完成签到 ,获得积分10
15秒前
17秒前
Hello应助我爱睡懒觉采纳,获得10
17秒前
18秒前
18秒前
温伊发布了新的文献求助10
20秒前
21秒前
Layqiwook发布了新的文献求助10
22秒前
shutong发布了新的文献求助10
23秒前
刺五加发布了新的文献求助10
24秒前
大个应助hqh采纳,获得10
25秒前
Layqiwook完成签到,获得积分10
28秒前
30秒前
温伊完成签到,获得积分10
31秒前
32秒前
zy完成签到 ,获得积分10
33秒前
思源应助Betty采纳,获得10
34秒前
123发布了新的文献求助10
36秒前
37秒前
Brightan完成签到,获得积分10
38秒前
柒柒完成签到,获得积分10
39秒前
桐桐应助浮生若梦采纳,获得10
40秒前
dnn发布了新的文献求助10
41秒前
小乖乖永远在路上完成签到,获得积分10
41秒前
情怀应助123采纳,获得10
41秒前
青衣北风完成签到,获得积分10
42秒前
伊可完成签到 ,获得积分10
42秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903658
求助须知:如何正确求助?哪些是违规求助? 3448463
关于积分的说明 10853161
捐赠科研通 3173896
什么是DOI,文献DOI怎么找? 1753644
邀请新用户注册赠送积分活动 847798
科研通“疑难数据库(出版商)”最低求助积分说明 790473