Noninvasive imaging analysis of vascular phenotypes improves prognostic stratification in primary liver cancer: a multi-cohort study

作者
Hongjie Xin,Ying Wang,Hongwei Xin,Qianwei Lai,Xuyi Wang,Huiyan Wang,Jun Hu,Yi Zhang,K Zhou,Bihong Liao,Yang Bai,zhihua chen
出处
期刊:npj precision oncology [Springer Nature]
标识
DOI:10.1038/s41698-025-01254-4
摘要

Tumor vascular microenvironment (TVME) critically governs biological properties in primary liver cancers (PLC), yet noninvasive tools to decode its heterogeneity remain clinically unavailable. In this study, data from six clinical cohorts encompassing hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined hepatocellular-cholangiocarcinoma, were comprehensively analyzed. Based on quantitative vascular features extracted from computed tomography (CT) images, a novel multi-task learning computational framework (MTV-Net) was constructed to generate two imaging biomarkers: TAVSPHE for classifying PLC based on vascular phenotype similarity to HCC or ICC, and TAVSRE for predicting post-resection recurrence risk. Patients classified as "ICC-like" by TAVSPHE exhibited significantly worse survival outcomes than "HCC-like" counterparts. Meanwhile, TAVSRE effectively stratified recurrence risk across all three PLC subtypes: high-risk groups showed substantially higher recurrence rates compared to low-risk groups (all P < 0.001) and enhanced risk discrimination when integrated with established clinical staging systems. The resulting MTV-Net-Clinic model demonstrated superior prognostic accuracy, with concordance index ranging from 0.731 to 0.823 across validation cohorts. Radiogenomics analysis revealed that enrichment of the extracellular matrix remodeling signaling pathway underlies the shared biological foundation of the two biomarkers. Collectively, MTV-Net serves as a TVME-targeted computational framework, enabling PLC reclassification from routine CT scans and thereby improving prognostic stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高冰旋发布了新的文献求助10
刚刚
jack_kunn发布了新的文献求助10
3秒前
雨姐科研应助易点邦采纳,获得10
4秒前
无花果应助55666采纳,获得10
6秒前
6秒前
曹家如完成签到,获得积分10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得30
8秒前
浮游应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
Mida应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
cherlie应助科研通管家采纳,获得20
8秒前
zhonglv7应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Mida应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
cherlie应助科研通管家采纳,获得20
8秒前
Mida应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
坤桑发布了新的文献求助10
9秒前
天天快乐应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714