亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a deep learning model for severe mitral stenosis detection from chest X-rays

作者
Bo Li,Kankan Zhao,Ang Liu,Wenqing Xu,Tang Yun,Kai Yang,Linlin Dai,Xiuyu Chen,Shihua Zhao,Chaowu Yan
出处
期刊:Open heart [BMJ]
卷期号:12 (2): e003519-e003519
标识
DOI:10.1136/openhrt-2025-003519
摘要

Background Although chest X-rays (CXRs) are widely used, diagnosing mitral stenosis (MS) based solely on CXR findings remains challenging in some cases. Objective This study aimed to develop a deep learning-based artificial intelligence (AI) model to detect MS using CXR. Methods In this retrospective study, 515 posteroanterior CXR images were analysed, including 285 from patients with MS and 230 from healthy controls. The dataset was randomly divided into training, validation and test datasets at a 7:2:1 ratio. An AI model was formulated by using the training dataset, and model performance was evaluated on the validation and test datasets using the area under the receiver operating characteristic curve (AUC), precision, recall, F1-score and accuracy. Saliency maps were generated to visualise the regions prioritised by the model. Results The model achieved an AUC of 0.99 on the validation dataset, with a precision of 0.96, recall of 0.96, F1-score of 0.96 and accuracy of 0.96. On the test dataset, the model achieved an AUC of 0.99, with a precision of 0.95, recall of 0.94, F1-score of 0.94 and accuracy of 0.94. Saliency maps highlighted regions consistent with known radiographic features of MS. Conclusion The developed deep learning-based AI model demonstrated high performance in detecting MS from CXR. This approach may provide a convenient and accessible screening tool for MS, particularly in resource-limited areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
shhoing应助科研通管家采纳,获得10
4秒前
常有李完成签到,获得积分10
18秒前
Akashi完成签到 ,获得积分10
46秒前
1分钟前
1分钟前
shennie发布了新的文献求助30
1分钟前
科研通AI2S应助shennie采纳,获得10
1分钟前
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助艺小呆采纳,获得10
2分钟前
2分钟前
momo发布了新的文献求助10
2分钟前
momo完成签到,获得积分10
3分钟前
3分钟前
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
MchemG完成签到,获得积分0
5分钟前
5分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
和风完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
淡定自中发布了新的文献求助10
6分钟前
CodeCraft应助杨柳9203采纳,获得10
6分钟前
6分钟前
dynamoo应助jqliu采纳,获得10
7分钟前
jqliu完成签到,获得积分10
7分钟前
level完成签到 ,获得积分10
7分钟前
斯文败类应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543405
求助须知:如何正确求助?哪些是违规求助? 4629504
关于积分的说明 14611266
捐赠科研通 4570834
什么是DOI,文献DOI怎么找? 2505960
邀请新用户注册赠送积分活动 1483168
关于科研通互助平台的介绍 1454578