The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death

濒危物种 心源性猝死 心脏病学 医学 内科学 重症监护医学 生物 生态学 栖息地
作者
Andreas Voss,Jürgen Kurths,H.J. Kleiner,A. Witt,Niels Wessel,Peter Saparin,K J Osterziel,Ronald Schurath,Rainer Dietz
出处
期刊:Cardiovascular Research [Oxford University Press]
卷期号:31 (3): 419-433 被引量:443
标识
DOI:10.1016/s0008-6363(96)00008-9
摘要

This study introduces new methods of non-linear dynamics (NLD) and compares these with traditional methods of heart rate variability (HRV) and high resolution ECG (HRECG) analysis in order to improve the reliability of high risk stratification.Simultaneous 30 min high resolution ECG's and long-term ECG's were recorded from 26 cardiac patients after myocardial infarction (MI). They were divided into two groups depending upon the electrical risk, a low risk group (group 2, n = 10) and a high risk group (group 3, n = 16). The control group consisted of 35 healthy persons (group 1). From these electrocardiograms we extracted standard measures in time and frequency domain as well as measures from the new non-linear methods of symbolic dynamics and renormalized entropy.Applying discriminant function techniques on HRV analysis the parameters of non-linear dynamics led to an acceptable differentiation between healthy persons and high risk patients of 96%. The time domain and frequency domain parameters were successful in less than 90%. The combination of parameters from all domains and a stepwise discriminant function separated these groups completely (100%). Use of this discriminant function classified three patients with apparently low (no) risk into the same cluster as high risk patients. The combination of the HRECG and HRV analysis showed the same individual clustering but increased the positive value of separation.The methods of NLD describe complex rhythm fluctuations and separate structures of non-linear behavior in the heart rate time series more successfully than classical methods of time and frequency domains. This leads to an improved discrimination between a normal (healthy persons) and an abnormal (high risk patients) type of heart beat generation. Some patients with an unknown risk exhibit similar patterns to high risk patients and this suggests a hidden high risk. The methods of symbolic dynamics and renormalized entropy were particularly useful measures for classifying the dynamics of HRV.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
幺幺咔完成签到 ,获得积分10
7秒前
浦肯野发布了新的文献求助10
8秒前
ZJHYNL完成签到,获得积分10
10秒前
mtiantianm完成签到 ,获得积分10
12秒前
Eden发布了新的文献求助10
13秒前
17秒前
浦肯野完成签到,获得积分0
18秒前
20秒前
21秒前
葱葱完成签到,获得积分10
22秒前
Eden发布了新的文献求助10
25秒前
von发布了新的文献求助10
27秒前
绝情继父发布了新的文献求助10
27秒前
健壮傲之完成签到 ,获得积分10
28秒前
舒先生完成签到,获得积分10
30秒前
EnjieLin完成签到,获得积分10
36秒前
keke完成签到 ,获得积分10
37秒前
香蕉书兰完成签到,获得积分20
38秒前
hope完成签到,获得积分10
39秒前
wei_ahpu完成签到,获得积分10
39秒前
40秒前
ssy完成签到 ,获得积分10
40秒前
Eden发布了新的文献求助10
41秒前
奥斯卡完成签到,获得积分0
47秒前
充电宝应助123采纳,获得10
56秒前
锅巴完成签到 ,获得积分10
58秒前
stone完成签到,获得积分10
1分钟前
科研人员完成签到 ,获得积分20
1分钟前
Ping完成签到,获得积分10
1分钟前
Eden完成签到,获得积分20
1分钟前
哎哟哎哟完成签到,获得积分10
1分钟前
壮观人达发布了新的文献求助10
1分钟前
舒心的雍应助ixueyi采纳,获得10
1分钟前
oi完成签到 ,获得积分10
1分钟前
1分钟前
reece完成签到 ,获得积分10
1分钟前
nini发布了新的文献求助10
1分钟前
ixueyi完成签到,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851979
求助须知:如何正确求助?哪些是违规求助? 6275055
关于积分的说明 15627539
捐赠科研通 4967924
什么是DOI,文献DOI怎么找? 2678842
邀请新用户注册赠送积分活动 1623057
关于科研通互助平台的介绍 1579488