A specific microbiota signature is associated to various degrees of ulcerative colitis as assessed by a machine learning approach

溃疡性结肠炎 肠道菌群 内科学 炎症性肠病 微生物群 胃肠病学 生物 免疫学 机器学习 疾病 医学 生物信息学 计算机科学
作者
Brigida Barberio,Sonia Facchin,Ilaria Patuzzi,Alexander C. Ford,Davide Massimi,Giorgio Valle,Eleonora Sattin,Barbara Simionati,Elena Bertazzo,Fabiana Zingone,Edoardo Savarino
出处
期刊:Gut microbes [Landes Bioscience]
卷期号:14 (1) 被引量:52
标识
DOI:10.1080/19490976.2022.2028366
摘要

Ulcerative colitis (UC) is a complex immune-mediated disease in which the gut microbiota plays a central role, and may determine prognosis and disease progression. We aimed to assess whether a specific microbiota profile, as measured by a machine learning approach, can be associated with disease severity in patients with UC. In this prospective pilot study, consecutive patients with active or inactive UC and healthy controls (HCs) were enrolled. Stool samples were collected for fecal microbiota assessment analysis by 16S rRNA gene sequencing approach. A machine learning approach was used to predict the groups' separation. Thirty-six HCs and forty-six patients with UC (20 active and 26 inactive) were enrolled. Alpha diversity was significantly different between the three groups (Shannon index: p-values: active UC vs HCs = 0.0005; active UC vs inactive UC = 0.0273; HCs vs inactive UC = 0.0260). In particular, patients with active UC showed the lowest values, followed by patients with inactive UC, and HCs. At species level, we found high levels of Bifidobacterium adolescentis and Haemophilus parainfluenzae in inactive UC and active UC, respectively. A specific microbiota profile was found for each group and was confirmed with sparse partial least squares discriminant analysis, a machine learning-supervised approach. The latter allowed us to observe a perfect class prediction and group separation using the complete information (full Operational Taxonomic Unit table), with a minimal loss in performance when using only 5% of features. A machine learning approach to 16S rRNA data identifies a bacterial signature characterizing different degrees of disease activity in UC. Follow-up studies will clarify whether such microbiota profiling are useful for diagnosis and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙花完成签到 ,获得积分10
1秒前
月如钩发布了新的文献求助10
2秒前
pp关闭了pp文献求助
2秒前
wanci应助好好做人采纳,获得10
2秒前
3秒前
4秒前
5秒前
SYLH应助凶狠的鸣凤采纳,获得10
5秒前
脑洞疼应助musong采纳,获得10
6秒前
西柚完成签到 ,获得积分10
6秒前
小二郎应助HHHSean采纳,获得10
6秒前
一安发布了新的文献求助10
8秒前
州12完成签到,获得积分10
9秒前
AiX-zzzzz发布了新的文献求助10
9秒前
10秒前
俏皮碧玉完成签到,获得积分20
11秒前
好厉害杰瑞完成签到,获得积分10
11秒前
ljc完成签到,获得积分0
12秒前
HHHSean完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
周小鱼发布了新的文献求助10
16秒前
16秒前
钮祜禄小八完成签到,获得积分10
17秒前
17秒前
dingyifan发布了新的文献求助10
18秒前
科研通AI5应助妥妥采纳,获得10
18秒前
18秒前
19秒前
19秒前
20秒前
HHHSean发布了新的文献求助10
20秒前
musong发布了新的文献求助10
20秒前
22秒前
mltyyds发布了新的文献求助30
22秒前
华仔应助杨y采纳,获得10
22秒前
SYLH应助zzx采纳,获得10
22秒前
王SQ完成签到 ,获得积分10
22秒前
好好做人发布了新的文献求助10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807468
求助须知:如何正确求助?哪些是违规求助? 3352217
关于积分的说明 10357930
捐赠科研通 3068242
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810014
科研通“疑难数据库(出版商)”最低求助积分说明 765853