清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AdPSO: Adaptive PSO-Based Task Scheduling Approach for Cloud Computing

计算机科学 粒子群优化 惯性 云计算 调度(生产过程) 作业车间调度 分布式计算 启发式 群体智能 数学优化 算法 数学 地铁列车时刻表 经典力学 操作系统 物理
作者
Said Nabi,Masroor Ahmad,Muhammad Ibrahim,Habib Hamam
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (3): 920-920 被引量:90
标识
DOI:10.3390/s22030920
摘要

Cloud computing has emerged as the most favorable computing platform for researchers and industry. The load balanced task scheduling has emerged as an important and challenging research problem in the Cloud computing. Swarm intelligence-based meta-heuristic algorithms are considered more suitable for Cloud scheduling and load balancing. The optimization procedure of swarm intelligence-based meta-heuristics consists of two major components that are the local and global search. These algorithms find the best position through the local and global search. To achieve an optimized mapping strategy for tasks to the resources, a balance between local and global search plays an effective role. The inertia weight is an important control attribute to effectively adjust the local and global search process. There are many inertia weight strategies; however, the existing approaches still require fine-tuning to achieve optimum scheduling. The selection of a suitable inertia weight strategy is also an important factor. This paper contributed an adaptive Particle Swarm Optimisation (PSO) based task scheduling approach that reduces the task execution time, and increases throughput and Average Resource Utilization Ratio (ARUR). Moreover, an adaptive inertia weight strategy namely Linearly Descending and Adaptive Inertia Weight (LDAIW) is introduced. The proposed scheduling approach provides a better balance between local and global search leading to an optimized task scheduling. The performance of the proposed approach has been evaluated and compared against five renown PSO based inertia weight strategies concerning makespan and throughput. The experiments are then extended and compared the proposed approach against the other four renowned meta-heuristic scheduling approaches. Analysis of the simulated experimentation reveals that the proposed approach attained up to 10%, 12% and 60% improvement for makespan, throughput and ARUR respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowuge完成签到 ,获得积分10
刚刚
xkhxh完成签到 ,获得积分10
6秒前
17秒前
20秒前
马婷婷发布了新的文献求助10
23秒前
Microbiota发布了新的文献求助10
23秒前
不辣的完成签到 ,获得积分10
27秒前
舒服的月饼完成签到 ,获得积分10
27秒前
39秒前
41秒前
Ricardo完成签到 ,获得积分10
44秒前
zyq发布了新的文献求助10
46秒前
木南完成签到 ,获得积分10
47秒前
握瑾怀瑜完成签到 ,获得积分0
47秒前
zhdjj完成签到 ,获得积分10
53秒前
NexusExplorer应助马婷婷采纳,获得10
54秒前
zyq完成签到,获得积分20
55秒前
zz完成签到 ,获得积分10
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
1分钟前
Microbiota完成签到,获得积分10
1分钟前
1分钟前
lily完成签到 ,获得积分10
1分钟前
back you up完成签到,获得积分0
1分钟前
WSZXQ完成签到,获得积分10
2分钟前
娟娟加油完成签到 ,获得积分10
2分钟前
2分钟前
陈_Ccc完成签到 ,获得积分10
2分钟前
2分钟前
范振杰发布了新的文献求助10
2分钟前
马婷婷发布了新的文献求助10
2分钟前
Rita应助范振杰采纳,获得10
2分钟前
Owen应助Bryan采纳,获得10
2分钟前
Tina完成签到 ,获得积分10
2分钟前
雪花完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
清秀的怀蕊完成签到 ,获得积分10
3分钟前
203040发布了新的文献求助10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626