A General Approach for the Automation of Hydraulic Excavator Arms Using Reinforcement Learning

挖掘机 强化学习 液压缸 自动化 控制工程 控制器(灌溉) 弹道 计算机科学 人工智能 控制理论(社会学) 非线性系统 机器人学 机器人 工程类 控制(管理) 机械工程 物理 量子力学 天文 农学 生物
作者
Pascal Egli,Marco Hutter
出处
期刊:IEEE robotics and automation letters 卷期号:7 (2): 5679-5686 被引量:38
标识
DOI:10.1109/lra.2022.3152865
摘要

This article presents a general approach to derive an end effector trajectory tracking controller for highly nonlinear hydraulic excavator arms. Rather than requiring an analytical model of the system, we use a neural network model that is trained based on measurements collected during operation of the machine. The data-driven model effectively represents the actuator dynamics including the cylinder-to-joint-space conversion. Requiring only the distances between the individual joints, a simulation is set up to train a control policy using reinforcement learning (RL). The policy outputs pilot stage control commands that can be directly applied to the machine without further fine-tuning. The proposed approach is implemented on a Menzi Muck M545, a 12 $\mathrm{t}$ hydraulic excavator, and tested in different task space trajectory tracking scenarios, with and without soil interaction. Compared to a commercial grading controller, which requires laborious hand-tuning by expert engineers, the learned controller shows higher tracking accuracy, indicating that the achieved performance is sufficient for the practical application on construction sites and that the proposed approach opens a new avenue for future machine automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐安琪完成签到,获得积分10
刚刚
zzz完成签到 ,获得积分10
刚刚
ylyh完成签到 ,获得积分20
1秒前
清秀的初翠完成签到 ,获得积分10
2秒前
diraczh完成签到,获得积分10
3秒前
effrwerwe完成签到,获得积分20
4秒前
科研通AI5应助贺小刚采纳,获得10
4秒前
6秒前
6秒前
FIN发布了新的文献求助100
6秒前
Jr L发布了新的文献求助10
10秒前
解惑发布了新的文献求助10
11秒前
cyy发布了新的文献求助10
12秒前
14秒前
Orange应助DJDJ采纳,获得10
15秒前
GRG完成签到 ,获得积分10
16秒前
sunday2024完成签到,获得积分10
16秒前
19秒前
19秒前
帅不屈服发布了新的文献求助10
19秒前
充电宝应助Charlie采纳,获得10
19秒前
李健的粉丝团团长应助li采纳,获得10
21秒前
Freya应助鹿谷波采纳,获得10
23秒前
00发布了新的文献求助10
24秒前
25秒前
25秒前
帅不屈服完成签到,获得积分10
25秒前
美满胜发布了新的文献求助10
26秒前
遇上就这样吧应助FIN采纳,获得50
26秒前
26秒前
Thien应助李小汁采纳,获得10
29秒前
DJDJ发布了新的文献求助10
30秒前
sivan完成签到,获得积分10
30秒前
豪杰发布了新的文献求助10
32秒前
Hello应助正直的魔镜采纳,获得10
33秒前
33秒前
固的曼发布了新的文献求助50
34秒前
kid1412完成签到 ,获得积分10
35秒前
彭于晏应助Jr L采纳,获得10
38秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130