Differential diagnosis of hereditary anemias from a fraction of blood drop by digital holography and hierarchical machine learning

鉴别诊断 医学 贫血 人口 重症监护医学 计算机科学 儿科 病理
作者
Pasquale Memmolo,Genny Aprea,Vittorio Bianco,Roberta Russo,Immacolata Andolfo,Martina Mugnano,Francesco Merola,Lisa Miccio,Achille Iolascon,Pietro Ferraro
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:: 113945-113945
标识
DOI:10.1016/j.bios.2021.113945
摘要

Anemia affects about the 25% of the global population and can provoke severe diseases, ranging from weakness and dizziness to pregnancy problems, arrhythmias and hearth failures. About 10% of the patients are affected by rare anemias of which 80% are hereditary. Early differential diagnosis of anemia enables prescribing patients a proper treatment and diet, which is effective to mitigate the associated symptoms. Nevertheless, the differential diagnosis of these conditions is often difficult due to shared and overlapping phenotypes. Indeed, the complete blood count and unaided peripheral blood smear observation cannot always provide a reliable differential diagnosis, so that biomedical assays and genetic tests are needed. These procedures are not error-free, require skilled personnel, and severely impact the financial resources of national health systems. Here we show a differential screening system for hereditary anemias that relies on holographic imaging and artificial intelligence. Label-free holographic imaging is aided by a hierarchical machine learning decider that works even in the presence of a very limited dataset but is enough accurate for discerning between different anemia classes with minimal morphological dissimilarities. It is worth to notice that only a few tens of cells from each patient are sufficient to obtain a correct diagnosis, with the advantage of significantly limiting the volume of blood drawn. This work paves the way to a wider use of home screening systems for point of care blood testing and telemedicine with lab-on-chip platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘某发布了新的文献求助10
刚刚
4秒前
大豆终结者完成签到,获得积分10
4秒前
5秒前
斯文的萝莉完成签到,获得积分10
5秒前
郭文博完成签到,获得积分20
5秒前
caohai发布了新的文献求助10
5秒前
动漫大师发布了新的文献求助10
5秒前
5秒前
彭于晏应助布曲采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
6秒前
卡卡西应助科研通管家采纳,获得30
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
osmanthus应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
卡卡西应助科研通管家采纳,获得20
7秒前
8秒前
8秒前
若雨凌风应助科研通管家采纳,获得20
8秒前
隐形曼青应助科研通管家采纳,获得30
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
yzt发布了新的文献求助10
9秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824284
求助须知:如何正确求助?哪些是违规求助? 3366619
关于积分的说明 10441418
捐赠科研通 3085832
什么是DOI,文献DOI怎么找? 1697588
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769634