放大器
支持向量机
行为建模
多项式的
非线性系统
计算机科学
功率(物理)
多项式与有理函数建模
多项式回归
预失真
氮化镓
射频功率放大器
算法
电子工程
回归分析
人工智能
数学
工程类
机器学习
电信
带宽(计算)
物理
数学分析
有机化学
化学
量子力学
图层(电子)
作者
Shijie Wang,Justin King,Jialin Cai
摘要
Abstract In this article, a novel behavior modeling methodology for radio frequency (RF) power amplifiers (PAs) is introduced. The model is targeted towards strongly nonlinear Doherty power amplifiers (DPAs), combining the memory polynomial (MP) topology with the existing support vector regression (SVR) algorithm. The resulting novel model, is termed the memory polynomial support vector regression (MP‐SVR) model. Experimental validation proceeds by applying the proposed modeling method to both two standard gallium nitride (GaN) DPA with different nonlinearity, as well as a multi‐transistor GaN DPA. Compared with traditional Volterra based models, the standard SVR model, the augmented SVR (ASVR) model and the new augmented SVR (NASVR) model, the proposed MP‐SVR model gives superior prediction accuracy in both cases. This shows the efficacy of the proposed modeling method.
科研通智能强力驱动
Strongly Powered by AbleSci AI