S3Net: Spectral–Spatial Siamese Network for Few-Shot Hyperspectral Image Classification

过度拟合 人工智能 高光谱成像 计算机科学 模式识别(心理学) 熵(时间箭头) 交叉熵 上下文图像分类 冗余(工程) 卷积(计算机科学) 人工神经网络 图像(数学) 量子力学 操作系统 物理
作者
Zhaohui Xue,Yiyang Zhou,Peijun Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:97
标识
DOI:10.1109/tgrs.2022.3181501
摘要

Deep learning (DL) has shown great potentials for hyperspectral image (HSI) classification due to its powerful ability of nonlinear modeling and end-to-end optimization. However, DL models are easily get trapped into overfitting due to limited training labels since the labeling process is time-consuming and laborious in real classification scenario. To overcome this issue, we propose a novel spectral-spatial siamese network (S3Net) for few-shot HSI classification. Firstly, a lightweight spectral-spatial network (SSN) composed of 1-D and 2-D convolution is proposed to extract spectral-spatial features. Secondly, S3Net is constructed by two SSNs in dual branches, which can augment training set by feeding sample pairs into each branch, and thus enhancing the model separability. To provide more features for the model, differentiated patches are fed into each branch, where negative samples are random selected to avoid redundancy. Finally, a weighted contrastive loss is designed to promote the model to fit in the right direction by focusing on sample pairs that are hardly to be identified. Moreover, another adaptive cross entropy loss is conceived to learn the fusion ratio of the two branches. Experiments based on three commonly used HSI data sets demonstrate that S3Net outperforms traditional and state-of-the-art DL-based HSI classification methods under few-shot training scenario. In addition, the weighted contrastive loss and the adaptive cross entropy loss jointly improve the discrimination power of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
洋洋羊发布了新的文献求助10
1秒前
1秒前
李健应助achen采纳,获得30
3秒前
3秒前
pishuang完成签到,获得积分10
4秒前
轻松水壶完成签到,获得积分20
4秒前
4秒前
小王发布了新的文献求助100
5秒前
5秒前
二队淼队长完成签到,获得积分10
6秒前
Kevin Li发布了新的文献求助10
6秒前
xqq发布了新的文献求助10
6秒前
野狗拉丽完成签到,获得积分10
6秒前
顾矜应助zikk233采纳,获得10
6秒前
Fine发布了新的文献求助10
6秒前
HYF发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
9秒前
mhlu7应助平淡沛蓝采纳,获得20
11秒前
小号完成签到,获得积分10
11秒前
太难了完成签到,获得积分10
11秒前
haoliangshi发布了新的文献求助10
11秒前
科研通AI6应助小王采纳,获得10
12秒前
Hilda007应助酷酷巧蟹采纳,获得10
12秒前
12秒前
郭彩虹发布了新的文献求助10
12秒前
小蘑菇应助flysky120采纳,获得10
13秒前
15秒前
NexusExplorer应助非理性人群采纳,获得10
15秒前
15秒前
小康发布了新的文献求助10
16秒前
Zyk发布了新的文献求助10
18秒前
科研通AI6应助威武的天德采纳,获得10
19秒前
20秒前
21秒前
共享精神应助顺利的愫采纳,获得10
21秒前
zikk233发布了新的文献求助10
21秒前
所所应助尘默采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416958
求助须知:如何正确求助?哪些是违规求助? 4533026
关于积分的说明 14137984
捐赠科研通 4449106
什么是DOI,文献DOI怎么找? 2440575
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858