Site-directed capture of laccase at edge-rich graphene via an interfacial hydrophobicity effect for direct electrochemistry study

漆酶 化学 电子转移 电极 电化学 石墨烯 化学工程 生物传感器 纳米技术 光化学 有机化学 材料科学 物理化学 生物化学 工程类
作者
Tuotuo Ma,Wenjing Mu,Jiachen Meng,Qiang Song,Wei Liu,Dan Wen
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier BV]
卷期号:919: 116562-116562 被引量:2
标识
DOI:10.1016/j.jelechem.2022.116562
摘要

• A free-standing ERG film with hydrophobic surface realized the direct electrochemistry of laccase. • A faster electron transfer kinetic and a higher bioelectrocatalytic activity towards O 2 reduction with over 10 times’ enhancement in reductive current were achieved at laccase/ERG electrode. • An interfacial hydrophobicity effect was demonstrated for the site-directed capture of laccase immobilization. Direct electrochemistry of oxidoreductase on electrode plays critical roles in the development of enzymatic biosensing and biofuel cells. Herein, a free-standing edge-rich graphene (ERG) film in-situ fabricated on a porous and conductive Si 3 N 4 nanowires template with hydrophobic surface was directly used as a self-supporting electrode for site-directed capture of laccase from Agaricus bisporus . The ERG film possessed abundant edge-rich active sites, high conductivity, and especially hydrophobic surface, which realized the direct electron transfer of the immobilized laccase and its bioelectrocatalysis towards the O 2 reduction. With the comprehensive comparison to hydrophilic ERG, we found that the interfacial hydrophobicity played an important role for the orientated immobilization of laccase. Thereafter a faster electron transfer kinetic (1.32 vs. 0.74 s −1 ) and a higher bioelectrocatalytic activity towards O 2 with over 10 times’ enhancement in reductive current were achieved. This is probably because the hydrophobic region of laccase tends to specifically interact with the hydrophobic surface, allowing the site-directed capture of laccase on the hydrophobic ERG electrode. With an emphasis of the interfacial hydrophobicity effect, these results would not only contribute to an in-depth understanding of the nano-bio interface electron transfer, but also provide a new insight to design high-efficient bioelectrodes for biosensors and biofuel cells applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
难得心亮发布了新的文献求助10
刚刚
贪玩若烟完成签到,获得积分10
1秒前
1秒前
huangyulin66发布了新的文献求助10
2秒前
3秒前
顺风顺水的薇容完成签到 ,获得积分10
4秒前
扎耶yeah应助阿木木采纳,获得10
4秒前
QQ发布了新的文献求助30
5秒前
77seven发布了新的文献求助10
6秒前
6秒前
6秒前
香蕉觅云应助暴发户采纳,获得30
7秒前
清冷渊完成签到 ,获得积分10
8秒前
菠萝水手发布了新的文献求助10
8秒前
就叫十一吧完成签到,获得积分10
8秒前
天天快乐应助yaya采纳,获得10
9秒前
momo发布了新的文献求助10
10秒前
ann发布了新的文献求助30
11秒前
13秒前
凌发发布了新的文献求助10
13秒前
FashionBoy应助Lian采纳,获得10
14秒前
所所应助优美的小笨蛋采纳,获得10
14秒前
研友_VZG7GZ应助诚c采纳,获得30
17秒前
18秒前
wyr完成签到,获得积分10
18秒前
丘比特应助sciiiiii采纳,获得10
18秒前
突破渴望完成签到,获得积分20
19秒前
南境发布了新的文献求助10
19秒前
20秒前
忽悠老羊完成签到 ,获得积分10
20秒前
科研通AI6应助小苏采纳,获得10
20秒前
20秒前
科研通AI2S应助甜蜜的盼秋采纳,获得10
22秒前
鱼尾迟迟发布了新的文献求助10
23秒前
23秒前
24秒前
panpan发布了新的文献求助10
24秒前
GG完成签到,获得积分10
25秒前
丰富山灵完成签到 ,获得积分10
25秒前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4388344
求助须知:如何正确求助?哪些是违规求助? 3879973
关于积分的说明 12084955
捐赠科研通 3523737
什么是DOI,文献DOI怎么找? 1933733
邀请新用户注册赠送积分活动 974574
科研通“疑难数据库(出版商)”最低求助积分说明 872695