亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Secondary structure prediction of long noncoding RNA: review and experimental comparison of existing approaches

计算机科学 水准点(测量) 源代码 公制(单位) 核酸二级结构 机器学习 人工智能 功能(生物学) 蛋白质二级结构 核糖核酸 核酸结构 计算生物学 数据挖掘 生物 工程类 生物化学 运营管理 大地测量学 进化生物学 基因 地理 操作系统
作者
Leandro A. Bugnon,Alejando A Edera,Santiago Prochetto,M. Gérard,Jonathan Raad,Emilio Fenoy,María Florencia Rubiolo,Uciel Chorostecki,Toni Gabaldón,Federico Ariel,Leandro E. Di Persia,Diego H. Milone,Georgina Stegmayer
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:9
标识
DOI:10.1093/bib/bbac205
摘要

Abstract Motivation In contrast to messenger RNAs, the function of the wide range of existing long noncoding RNAs (lncRNAs) largely depends on their structure, which determines interactions with partner molecules. Thus, the determination or prediction of the secondary structure of lncRNAs is critical to uncover their function. Classical approaches for predicting RNA secondary structure have been based on dynamic programming and thermodynamic calculations. In the last 4 years, a growing number of machine learning (ML)-based models, including deep learning (DL), have achieved breakthrough performance in structure prediction of biomolecules such as proteins and have outperformed classical methods in short transcripts folding. Nevertheless, the accurate prediction for lncRNA still remains far from being effectively solved. Notably, the myriad of new proposals has not been systematically and experimentally evaluated. Results In this work, we compare the performance of the classical methods as well as the most recently proposed approaches for secondary structure prediction of RNA sequences using a unified and consistent experimental setup. We use the publicly available structural profiles for 3023 yeast RNA sequences, and a novel benchmark of well-characterized lncRNA structures from different species. Moreover, we propose a novel metric to assess the predictive performance of methods, exclusively based on the chemical probing data commonly used for profiling RNA structures, avoiding any potential bias incorporated by computational predictions when using dot-bracket references. Our results provide a comprehensive comparative assessment of existing methodologies, and a novel and public benchmark resource to aid in the development and comparison of future approaches. Availability Full source code and benchmark datasets are available at: https://github.com/sinc-lab/lncRNA-folding Contact lbugnon@sinc.unl.edu.ar
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
getgetting完成签到,获得积分20
30秒前
41秒前
getgetting发布了新的文献求助10
45秒前
z银时猫猫发布了新的文献求助10
58秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
慕青应助getgetting采纳,获得10
1分钟前
烟花应助ljz采纳,获得10
1分钟前
WilliamJarvis完成签到 ,获得积分10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
ning_qing完成签到 ,获得积分10
2分钟前
璇别给璇别的求助进行了留言
4分钟前
Li应助科研通管家采纳,获得10
5分钟前
bc应助科研通管家采纳,获得30
5分钟前
bc应助科研通管家采纳,获得30
5分钟前
Li应助科研通管家采纳,获得10
5分钟前
Fischl完成签到 ,获得积分10
5分钟前
自然幼翠完成签到,获得积分20
5分钟前
自然幼翠发布了新的文献求助30
6分钟前
zm发布了新的文献求助10
6分钟前
Li应助科研通管家采纳,获得10
7分钟前
Li应助科研通管家采纳,获得10
7分钟前
jyy应助科研通管家采纳,获得10
7分钟前
bc应助科研通管家采纳,获得30
7分钟前
深情安青应助科研通管家采纳,获得10
7分钟前
zm完成签到,获得积分10
7分钟前
8分钟前
getgetting发布了新的文献求助10
8分钟前
8分钟前
zzzjh发布了新的文献求助10
8分钟前
小吴发布了新的文献求助10
8分钟前
今后应助zzzjh采纳,获得10
8分钟前
8分钟前
zoey发布了新的文献求助10
8分钟前
搜集达人应助zoey采纳,获得10
8分钟前
Li应助科研通管家采纳,获得10
9分钟前
jyy应助科研通管家采纳,获得10
9分钟前
h0jian09完成签到,获得积分10
10分钟前
领导范儿应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329356
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714